Skip to main content

Advertisement

Log in

Arthrospira platensis-Mediated Green Biosynthesis of Silver Nano-particles as Breast Cancer Controlling Agent: In Vitro and In Vivo Safety Approaches

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biogenic silver nanoparticles (bio-AgNPs) is one of the most fascinating nanomaterials used for several biomedical purposes. In the current study, we biosynthesized AgNPs (bio-AgNPs) using Arthrospira platensis (A-bio-AgNPs), Microcystis aeruginosa (M-bio-AgNPs), and Chlorella vulgaris (C-bio-AgNPs) active metabolites and evaluated their anticancer efficacy against breast cancer. The recovered bio-AgNPs were characterized using scanning and transmission electron microscopy (SEM and TEM). In addition, their safety profiles were monitored in vitro on PBMCs cells and in vivo on Albino mice. The obtained results indicated the safety usage of bio-AgNPs at concentrations of 0.1 mg/ml on PBMCs cells and 1.5 mg/ml on the Albino mice. The bio-AgNPs displayed dose-dependent cytotoxic effects against HepG-2, CaCO-2, and MCF-7 cell lines by inducing reactive oxygen species (ROS) and arresting the treated cells in G0/G1 and sub G0 phases. In addition, A-bio-AgNPs induced breast cancer cellular apoptosis by downregulating the expression of survivin, MMP7, TGF, and Bcl2 genes. Upon A-bio-AgNPs treatment, a significant reduction in tumor growth and prolonged survival rates were recorded in breast cancer BALB/c model. Furthermore, A-bio-AgNPs treatment significantly decreased the Ki-67 protein marker from 60% (in the untreated group) to 20% (in the treated group) and increased caspase-3 protein levels to 65% (in treated groups) comparing with 45% (in doxorubicin-treated groups).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Al-Madboly, L. A., El-Deeb, N. M., Kabbash, A., Nael, M. A., Kenawy, A. M., & Ragab, A. E. (2020). Purification, characterization, identification, and anticancer activity of a circular bacteriocin from Enterococcus thailandicus. Front Bioeng Biotechnol, 8, 450. https://doi.org/10.3389/fbioe.2020.00450

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F.-H., & Qoronfleh, M. W. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research, 23(1), 20. https://doi.org/10.1186/s40824-019-0166-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ibrahim, O. M., El-Deeb, N. M., Abbas, H., Elmasry, S. M., & El-Aassar, M. R. (2020). Alginate based tamoxifen/metal dual core-folate decorated shell: Nanocomposite targeted therapy for breast cancer via ROS-driven NF-κB pathway modulation. International Journal of Biological Macromolecules, 146, 119–131. https://doi.org/10.1016/j.ijbiomac.2019.12.266

    Article  CAS  PubMed  Google Scholar 

  4. Yassin, A. M., Elnouby, M., El-Deeb, N. M., & Hafez, E. E. (2016). Tungsten oxide nanoplates; The novelty in targeting metalloproteinase-7 gene in both cervix and colon cancer cells. Applied Biochemistry and Biotechnology, 180(4), 623–637. https://doi.org/10.1007/s12010-016-2120-x

    Article  CAS  PubMed  Google Scholar 

  5. Pugazhendhi, A., Edison, T., Karuppusamy, I., & Kathirvel, B. (2018). Inorganic nanoparticles: A potential cancer therapy for human welfare. International Journal of Pharmaceutics, 539(1–2), 104–111. https://doi.org/10.1016/j.ijpharm.2018.01.034

    Article  CAS  PubMed  Google Scholar 

  6. Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res Pharm Sci, 9(6), 385–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Saratale, R. G., Karuppusamy, I., Saratale, G. D., Pugazhendhi, A., Kumar, G., Park, Y., Ghodake, G. S., Bharagava, R. N., Banu, J. R., & Shin, H. S. (2018). A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids and Surfaces. B, Biointerfaces, 170, 20–35. https://doi.org/10.1016/j.colsurfb.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  8. Agarwal, H., Venkat Kumar, S., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406–413. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  9. Elshinawy, M. I., Al-Madboly, L. A., Ghoneim, W. M., & El-Deeb, N. M. (2018). Synergistic effect of newly introduced root canal medicaments; Ozonated olive oil and chitosan nanoparticles, against persistent endodontic pathogens. Frontiers in Microbiology, 9, 1371. https://doi.org/10.3389/fmicb.2018.01371

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rajan, R., Chandran, K., Harper, S. L., Yun, S.-I., & Kalaichelvan, P. T. (2015). Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Industrial Crops and Products, 70, 356–373. https://doi.org/10.1016/j.indcrop.2015.03.015

    Article  CAS  Google Scholar 

  11. El-Deeb, N. M., Abo-Eleneen, M. A., Al-Madboly, L. A., Sharaf, M. M., Othman, S. S., Ibrahim, O. M., & Mubarak, M. S. (2020). Biogenically synthesized polysaccharides-capped silver nanoparticles: Immunomodulatory and antibacterial potentialities against resistant Pseudomonas aeruginosa. Front Bioeng Biotechnol, 8, 643. https://doi.org/10.3389/fbioe.2020.00643

    Article  PubMed  PubMed Central  Google Scholar 

  12. Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J Toxicol, 2018, 2568038. https://doi.org/10.1155/2018/2568038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujisawa, T., Narikawa, R., Okamoto, S., Ehira, S., Yoshimura, H., Suzuki, I., Masuda, T., Mochimaru, M., Takaichi, S., Awai, K., Sekine, M., Horikawa, H., Yashiro, I., Omata, S., Takarada, H., Katano, Y., Kosugi, H., Tanikawa, S., Ohmori, K., … Ohmori, M. (2010). Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Research, 17(2), 85–103. https://doi.org/10.1093/dnares/dsq004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koch, A., Tamez, P., Pezzuto, J., & Soejarto, D. (2005). Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. Journal of Ethnopharmacology, 101(1–3), 95–99. https://doi.org/10.1016/j.jep.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  15. Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc 2006(3) https://doi.org/10.1101/pdb.prot4493

  16. Jing, Y., Tong, C., Zhang, J., Nakamura, T., Iankov, I., Russell, S. J., & Merchan, J. R. (2009). Tumor and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor. Cancer Research, 69(4), 1459–1468. https://doi.org/10.1158/0008-5472.Can-08-2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. El-Seedi, H. R., El-Shabasy, R. M., Khalifa, S. A. M., Saeed, A., Shah, A., Shah, R., Iftikhar, F. J., Abdel-Daim, M. M., Omri, A., Hajrahand, N. H., Sabir, J. S. M., Zou, X., Halabi, M. F., Sarhan, W., & Guo, W. (2019). Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances, 9(42), 24539–24559. https://doi.org/10.1039/C9RA02225B

    Article  CAS  Google Scholar 

  18. Tang, X., Loc, W. S., Dong, C., Matters, G. L., Butler, P. J., Kester, M., Meyers, C., Jiang, Y., & Adair, J. H. (2017). The use of nanoparticulates to treat breast cancer. Nanomedicine (London, England), 12(19), 2367–2388. https://doi.org/10.2217/nnm-2017-0202

    Article  CAS  Google Scholar 

  19. Yassin, A. M., El-Deeb, N. M., Metwaly, A. M., El Fawal, G. F., Radwan, M. M., & Hafez, E. E. (2017). Induction of apoptosis in human cancer cells through extrinsic and intrinsic pathways by Balanites aegyptiaca furostanol saponins and saponin-coated silver nanoparticles. Applied Biochemistry and Biotechnology, 182(4), 1675–1693. https://doi.org/10.1007/s12010-017-2426-3

    Article  CAS  PubMed  Google Scholar 

  20. El-Readi, M. Z., & Althubiti, M. A. (2019). Cancer nanomedicine: A new era of successful targeted therapy. Journal of Nanomaterials, 2019, 4927312. https://doi.org/10.1155/2019/4927312

    Article  CAS  Google Scholar 

  21. Ventola, C. L. (2017). Progress in nanomedicine: Approved and investigational nanodrugs. P t, 42(12), 742–755.

    PubMed  PubMed Central  Google Scholar 

  22. Rheder, D. T., Guilger, M., Bilesky-José, N., Germano-Costa, T., Pasquoto-Stigliani, T., Gallep, T. B. B., Grillo, R., Carvalho, C. D. S., Fraceto, L. F., & Lima, R. (2018). Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: Evaluation of toxicity and ecotoxicity. Science and Reports, 8(1), 12397. https://doi.org/10.1038/s41598-018-30317-9

    Article  CAS  Google Scholar 

  23. Hamouda, R. A., Hussein, M. H., Abo-Elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Science and Reports, 9(1), 13071. https://doi.org/10.1038/s41598-019-49444-y

    Article  CAS  Google Scholar 

  24. Husain, S., Afreen, S., Hemlata, Y. D., Afzal, B., & Fatma, T. (2019). Cyanobacteria as a bioreactor for synthesis of silver nanoparticles-An effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability. Journal of Microbiological Methods, 162, 77–82. https://doi.org/10.1016/j.mimet.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  25. Rosman, N. S. R., Harun, N. A., Idris, I., & Ismail, W. I. W. (2020). Eco-friendly silver nanoparticles (AgNPs) fabricated by green synthesis using the crude extract of marine polychaete, Marphysa moribidii: Biosynthesis, characterisation, and antibacterial applications. Heliyon, 6(11), e05462. https://doi.org/10.1016/j.heliyon.2020.e05462

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tomer, A. K., Rahi, T., Neelam, D. K., & Dadheech, P. K. (2019). Cyanobacterial extract-mediated synthesis of silver nanoparticles and their application in ammonia sensing. International Microbiology, 22(1), 49–58. https://doi.org/10.1007/s10123-018-0026-x

    Article  CAS  PubMed  Google Scholar 

  27. Mahdieh, M., Zolanvari, A., Azimee, A. S., & Mahdieh, M. (2012). Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica, 19(3), 926–929. https://doi.org/10.1016/j.scient.2012.01.010

    Article  CAS  Google Scholar 

  28. Sharma, A., Sharma, S., Sharma, K., Chetri, S. P. K., Vashishtha, A., Singh, P., Kumar, R., Rathi, B., & Agrawal, V. (2016). Algae as crucial organisms in advancing nanotechnology: A systematic review. Journal of Applied Phycology, 28(3), 1759–1774. https://doi.org/10.1007/s10811-015-0715-1

    Article  CAS  Google Scholar 

  29. Othman, A. M., Elsayed, M. A., Al-Balakocy, N. G., Hassan, M. M., & Elshafei, A. M. (2019). Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. Journal, Genetic Engineering & Biotechnology, 17(1), 8–8. https://doi.org/10.1186/s43141-019-0008-1

    Article  Google Scholar 

  30. Skandalis, N., Dimopoulou, A., Georgopoulou, A., Gallios, N., Papadopoulos, D., Tsipas, D., Theologidis, I., Michailidis, N., & Chatzinikolaidou, M. (2017). The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nanomaterials (Basel), 7(7), 178. https://doi.org/10.3390/nano7070178

    Article  CAS  Google Scholar 

  31. Yang, E. J., Kim, S., Kim, J. S., & Choi, I. H. (2012). Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials, 33(28), 6858–6867. https://doi.org/10.1016/j.biomaterials.2012.06.016

    Article  CAS  PubMed  Google Scholar 

  32. Carnovale, C., Bryant, G., Shukla, R., & Bansal, V. (2019). Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega, 4(1), 242–256. https://doi.org/10.1021/acsomega.8b03227

    Article  CAS  Google Scholar 

  33. Fratoddi, I., Venditti, I., Cametti, C., & Russo, M. V. (2015). How toxic are gold nanoparticles? The state-of-the-art. Nano Research, 8(6), 1771–1799. https://doi.org/10.1007/s12274-014-0697-3

    Article  CAS  Google Scholar 

  34. Gerber, A., Bundschuh, M., Klingelhofer, D., & Groneberg, D. A. (2013). Gold nanoparticles: Recent aspects for human toxicology. Journal of Occupational Medicine and Toxicology, 8(1), 32. https://doi.org/10.1186/1745-6673-8-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hornos Carneiro, M. F., & Barbosa, F. (2016). Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. Journal of Toxicology and Environmental Health, Part B, 19(3–4), 129–148. https://doi.org/10.1080/10937404.2016.1168762

    Article  CAS  Google Scholar 

  36. Ferdous Z, Nemmar A (2020) Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21(7) https://doi.org/10.3390/ijms21072375

  37. Patlolla, A. K., Hackett, D., & Tchounwou, P. B. (2015). Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Molecular and Cellular Biochemistry, 399(1–2), 257–268. https://doi.org/10.1007/s11010-014-2252-7

    Article  CAS  PubMed  Google Scholar 

  38. Ashraf, J. M., Ansari, M. A., Khan, H. M., Alzohairy, M. A., & Choi, I. (2016). Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Science and Reports, 6, 20414. https://doi.org/10.1038/srep20414

    Article  CAS  Google Scholar 

  39. Swanner, J., Mims, J., Carroll, D. L., Akman, S. A., Furdui, C. M., Torti, S. V., & Singh, R. N. (2015). Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells. International Journal of Nanomedicine, 10, 3937–3953. https://doi.org/10.2147/ijn.S80349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fahrenholtz CD, Swanner J, Ramirez-Perez M, Singh RN (2017) Heterogeneous responses of ovarian cancer cells to silver nanoparticles as a single agent and in combination with cisplatin. J Nanomater 2017https://doi.org/10.1155/2017/5107485

  41. Liu, P., Huang, Z., Chen, Z., Xu, R., Wu, H., Zang, F., Wang, C., & Gu, N. (2013). Silver nanoparticles: A novel radiation sensitizer for glioma? Nanoscale, 5(23), 11829–11836. https://doi.org/10.1039/c3nr01351k

    Article  CAS  PubMed  Google Scholar 

  42. Locatelli, E., Naddaka, M., Uboldi, C., Loudos, G., Fragogeorgi, E., Molinari, V., Pucci, A., Tsotakos, T., Psimadas, D., Ponti, J., & Franchini, M. C. (2014). Targeted delivery of silver nanoparticles and alisertib: In vitro and in vivo synergistic effect against glioblastoma. Nanomedicine (London, England), 9(6), 839–849. https://doi.org/10.2217/nnm.14.1

    Article  CAS  Google Scholar 

  43. Miura, N., & Shinohara, Y. (2009). Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochemical and Biophysical Research Communications, 390(3), 733–737. https://doi.org/10.1016/j.bbrc.2009.10.039

    Article  CAS  PubMed  Google Scholar 

  44. Kawata, K., Osawa, M., & Okabe, S. (2009). In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environmental Science and Technology, 43(15), 6046–6051. https://doi.org/10.1021/es900754q

    Article  CAS  PubMed  Google Scholar 

  45. Sanpui, P., Chattopadhyay, A., & Ghosh, S. S. (2011). Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Applied Materials & Interfaces, 3(2), 218–228. https://doi.org/10.1021/am100840c

    Article  CAS  Google Scholar 

  46. Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D. S., & Autrup, H. (2012). Toxicity of silver nanoparticles - Nanoparticle or silver ion? Toxicology Letters, 208(3), 286–292. https://doi.org/10.1016/j.toxlet.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  47. Zielinska, E., Zauszkiewicz-Pawlak, A., Wojcik, M., & Inkielewicz-Stepniak, I. (2018). Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget, 9(4), 4675–4697. https://doi.org/10.18632/oncotarget.22563

    Article  PubMed  Google Scholar 

  48. Guo, D., Zhao, Y., Zhang, Y., Wang, Q., Huang, Z., Ding, Q., Guo, Z., Zhou, X., Zhu, L., & Gu, N. (2014). The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. Journal of Biomedical Nanotechnology, 10(4), 669–678. https://doi.org/10.1166/jbn.2014.1625

    Article  CAS  PubMed  Google Scholar 

  49. Guo, D., Zhu, L., Huang, Z., Zhou, H., Ge, Y., Ma, W., Wu, J., Zhang, X., Zhou, X., Zhang, Y., Zhao, Y., & Gu, N. (2013). Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 34(32), 7884–7894. https://doi.org/10.1016/j.biomaterials.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  50. Sriram, M. I., Kanth, S. B., Kalishwaralal, K., & Gurunathan, S. (2010). Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. International Journal of Nanomedicine, 5, 753–762. https://doi.org/10.2147/ijn.S11727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Orta-García, S. T., Plascencia-Villa, G., Ochoa-Martínez, A. C., Ruiz-Vera, T., Pérez-Vázquez, F. J., Velázquez-Salazar, J. J., Yacamán, M. J., Navarro-Contreras, H. R., & Pérez-Maldonado, I. N. (2015). Analysis of cytotoxic effects of silver nanoclusters on human peripheral blood mononuclear cells ‘in vitro.’ Journal of Applied Toxicology, 35(10), 1189–1199. https://doi.org/10.1002/jat.3190

    Article  CAS  PubMed  Google Scholar 

  52. Jf, M., & P L,. (2015). Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Progress in Biomaterials, 4(2–4), 113–121. https://doi.org/10.1007/s40204-015-0042-2

    Article  CAS  Google Scholar 

  53. Vakkala, M., Pääkkö, P., & Soini, Y. (1999). Expression of caspases 3, 6 and 8 is increased in parallel with apoptosis and histological aggressiveness of the breast lesion. British Journal of Cancer, 81(4), 592–599. https://doi.org/10.1038/sj.bjc.6690735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters, 1(10), 515–519. https://doi.org/10.1021/nl0155274

    Article  CAS  Google Scholar 

  55. Urbańska, K., Pająk, B., Orzechowski, A., Sokołowska, J., Grodzik, M., Sawosz, E., Szmidt, M., & Sysa, P. (2015). The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells. Nanoscale Research Letters, 10, 98. https://doi.org/10.1186/s11671-015-0823-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Inwald, E. C., Klinkhammer-Schalke, M., Hofstädter, F., Zeman, F., Koller, M., Gerstenhauer, M., & Ortmann, O. (2013). Ki-67 is a prognostic parameter in breast cancer patients: Results of a large population-based cohort of a cancer registry. Breast Cancer Research and Treatment, 139(2), 539–552. https://doi.org/10.1007/s10549-013-2560-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scholzen, T., & Gerdes, J. (2000). The Ki-67 protein: From the known and the unknown. Journal of Cellular Physiology, 182(3), 311–322. https://doi.org/10.1002/(sici)1097-4652(200003)182:3%3c311::Aid-jcp1%3e3.0.Co;2-9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nehal: designing of the work, the acquisition, analysis, interpretation of data, drafted the work, and substantively revised.

Mai: Helped in the acquisition, analysis, interpretation of data, and drafted the work.

Omyma and Atef: Supervised, revised, and approved the submitted version.

Corresponding author

Correspondence to Nehal M. EL-Deeb.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethical Approval

All in vivo studies were done according to the City of Scientific Research and Technological Applications, Egypt, guidelines. The Research Ethical Committee at the pharmaceutical industries center, Egypt, under international and institutional guidelines (REC-FPTU) approved all used experimental protocols.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 14431 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL-Deeb, N.M., Abo-Eleneen, M.A., Awad, O.A. et al. Arthrospira platensis-Mediated Green Biosynthesis of Silver Nano-particles as Breast Cancer Controlling Agent: In Vitro and In Vivo Safety Approaches. Appl Biochem Biotechnol 194, 2183–2203 (2022). https://doi.org/10.1007/s12010-021-03751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03751-1

Keywords

Navigation