Skip to main content

Advertisement

Log in

Anti-atherosclerotic Activity of Para Methoxy Cinnamic Acid in High Fat Diet Induced Hyperlipidemia Model Rats

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hypercholesterolemia is a well-known etiological feature for cardiovascular diseases and a common indication of maximum categories of metabolic disorders. Para methoxy cinnamic acid is one of the cinnamic acid derivatives as a natural product obtained from the rice bran oil as an active constituent and has the antioxidant property. The present study was designed to evaluate the hypolipidemic activity of P-methoxy cinnamic acid against high fat diet induced hyperlipidemia in experimental rats. Male Wistar albino rats were divided into five groups (n = 6), and high fat diet was used to induce the hyperlipidemia for 28 days. P-methoxy cinnamic acid was used in two different doses (40 and 80 mg/kg body weight), and they were administered orally to the rats for 28 days during high fat diet. Atorvastatin (5 mg/kg) was used as reference standard. A significant elevated level of lipid abnormalities and tissue antioxidant parameters were reversed from normal level by the treatment of P-methoxy cinnamic acid in both the doses. Histopathological evidence further supported the protective action. Based on the initial findings, it was concluded that P-methoxy cinnamic acid was able to offer significant protection against high fat diet induced atherosclerosis. Future studies were recommended to identify the molecular mechanism of P-methoxy cinnamic acid against atherosclerosis protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data presented in this work are freely accessible to any other concerned researchers or students.

References

  1. Fidèle, N., Joseph, B., Emmanuel, T., & Théophile, D. (2017). Hypolipidemic, antioxidant and anti-atherosclerogenic effect of aqueous extract leaves of Cassia occidentalis Linn (Caesalpiniaceae) in diet-induced hypercholesterolemic rats. BMC Complementary and Alternative Medicine, 17(1), 76.

    Article  Google Scholar 

  2. Li, C., Zhang, W., Zhou, F., Chen, C., Zhou, L., Li, Y., Liu, L., Pei, F., Luo, H., Hu, Z., Cai, J., & Zeng, C. (2013). Cholesteryl ester transfer protein inhibitors in the treatment of dyslipidemia: A systematic review and meta-analysis. PLoS One, 8, e77049.

    Article  CAS  Google Scholar 

  3. Capewell, S., Ford, E., Croft, J., Critchley, J., Greenlund, K., & Labarthe, D. (2010). Cardiovascular risk factor trends and potential for reducing coronary heart disease mortality in the United States of America. Bulletin of the World Health Organization, 88, 120–130.

    Article  Google Scholar 

  4. Ntchapda, F., Maguirgue, K., Adjia, H., Etet, P. F., & Dimo, T. (2015). Hypolipidemic, antioxidant and anti-atherosclerogenic effects of aqueous extract of Zanthoxylum heitzii stem bark in diet-induced hypercholesterolemic rats. Asian Pacific Journal of Tropical Medicine, 8(5), 359–365.

    Article  Google Scholar 

  5. Kuklina, E. V., Yoon, P. W., & Keenan, N. L. (2009). Trends in high levels of low-density lipoprotein cholesterol in the United States, 1999–2006. Journal of the American Medical Association, 302(19), 2104–2110.

    Article  CAS  Google Scholar 

  6. Sharma, P. (2011). Cinnamic acid derivatives: A new chapter of various pharmacological activities. Journal of Chemical and Pharmaceutical Research, 3(4), 403–423.

    CAS  Google Scholar 

  7. Paim, R. T. T., Rodrigues, P. S. A., da Silva, J. Y. G., de Paula Junior, V. F., da Silva, B. B., De Freitas, C. A. S., Oriá, R. B., Florean, E. O. P. T., Rondina, D., & Guedes, M. I. F. (2020). p-Methoxycinnamic acid diesters lower dyslipidemia, liver oxidative stress and toxicity in high-fat diet fed mice and human peripheral blood lymphocytes. Nutrients, 12(1), 262.

    Article  CAS  Google Scholar 

  8. Arruda Filho, A. C. V., Rodrigues, P. A. S., Benjamin, S. R., Paim, R. T. T., Holanda, M. O., Silva, J. Y. G., Milo, T. S., Vieira, I. G. P., Queiroz, M. G. R., & Guedes, M. I. F. (2017). Hypolipidemic activity of P-methoxycinnamic diester (PCO-C) isolated from Copernicia prunífera against Triton WR-1339 and hyperlipidemic diet in mice. Environmental Toxicology and Pharmacology, 56, 198–203.

    Article  Google Scholar 

  9. Rodrigues, P. A. S., Guedes, I. F., Marques, M. M. M., da Silva, I. N. G., & Vieira, I. G. P. (2014). Hypoglycemic activity of copernicia cerifera mart. leaf powder extract in the treatment of alloxan-induced diabetic mice. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 115–118.

    Google Scholar 

  10. Gunasekaran, S., Venkatachalam, K., Jeyavel, K., & Namasivayam, N. (2014). Protective effect of p-methoxycinnamic acid, an active phenolic acid against 1,2-dimethylhydrazine-induced colon carcinogenesis: Modulating biotransforming bacterial enzymes and xenobiotic metabolizing enzymes. Molecular and Cellular Biochemistry, 394(1–2), 187–198.

    Article  CAS  Google Scholar 

  11. Okhawa, H., Qhishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  Google Scholar 

  12. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.

    Article  CAS  Google Scholar 

  13. Kakkar, P., Das, B., & Viswanatham, P. N. (1984). A modified spectrophotometric assay of super oxide dismutase. Indian Journal of Biochemistry & Biophysics, 21, 130–132.

    CAS  Google Scholar 

  14. Aebi, H. (1984). Catalase in vitro. In: Packer L, Orlando FL (org.) Methods in enzymology. New York: Academic Press, pp. 121–126

  15. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 7, 248–254.

    Article  Google Scholar 

  16. Pearson, T. A., Blair, S. N., & Daniels, S. R. (2002). AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. Circulation, 106, 388–391.

    Article  Google Scholar 

  17. Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135–1143.

    Article  CAS  Google Scholar 

  18. Van Gaal, L. F., Mertens, I. L., & De Block, C. E. (2006). Mechanisms linking obesity with cardiovascular disease. Nature, 444, 875–880.

    Article  Google Scholar 

  19. Frota, K. G., Matias, A. C. G., & Arêas, J. A. G. (2010). Influence of food components on lipid metabolism: Scenarios and perspective on the control and prevention of dyslipidemias. Food Science Technology, 30(1), 7–14.

    Article  Google Scholar 

  20. Ray, S. K., & Rege, N. N. (2000). Atorvastatin in the management of hyperlipidemia. Journal of Postgraduate Medicine, 46(3), 242–243.

    CAS  PubMed  Google Scholar 

  21. Berrougui, H., Ettaib, A., Herrere Gonzalez, M. D., Luazez de Sotomayor, M. A., Bennani-Kabchi, N., & Hmamouchi, M. (2003). Hypolipidemic and hypocholesterolemic effect of argan oil in meriones shawi rats. Journal of Ethnopharmacology, 89, 15–18.

    Article  CAS  Google Scholar 

  22. Takada, R., Saitoh, M., & Mori, T. (1994). Dietary gamma linoleic acid enriched oil reduces body fat content and induces liver enzymatic activity relating fatty acid beta oxidation in rats. The Journal of Nutrition, 124, 469–474.

    Article  CAS  Google Scholar 

  23. Oh, J., Lee, S. R., Hwang, K. T., & Ji, G. E. (2014). The anti-obesity effects of the dietary combination of fermented red ginseng with levan in high fat diet mouse model. Phytotherapy Research, 28, 617–622.

    Article  CAS  Google Scholar 

  24. Pande, V. V., & Dubey, S. (2009). Antihyperlipidemic activity of Sphaeranthus indicus on atherogenic diet induced hyperlipidemic rats. International Journal of Green Pharmacy, 4, 159–61.

    Article  Google Scholar 

  25. Jorge, L. P., & Maria, E. G. (2009). The role of antioxidant and antioxidant related enzymes in protective response to environmentally induced oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674, 137–147.

    Article  Google Scholar 

  26. Ali, N. M., Yusof, H. M., Long, K., Yeap, S. K., Ho, W. Y., Beh, B. K., Koh, S. P., Abdullah, M. P., & Alitheen, N. B. (2019). Antioxidant and hepatoprotective effect of aqueous extract of germinated and fermented mung bean on ethanol-mediated liver damage. BioMed Research International, 2013, 693–613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author contributed in this research work.

Corresponding author

Correspondence to Cheng Chen.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C. Anti-atherosclerotic Activity of Para Methoxy Cinnamic Acid in High Fat Diet Induced Hyperlipidemia Model Rats. Appl Biochem Biotechnol 194, 1911–1924 (2022). https://doi.org/10.1007/s12010-021-03735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03735-1

Keywords

Navigation