Skip to main content
Log in

Characterizations of Larval Gut Bacteria of Anopheles subpictus Grassi (1899) and their Role in Mosquito Development in Hooghly, West Bengal, India

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Malaria is a serious vector borne disease transmitted by different species of Anopheles mosquitoes. The present study was aimed to isolate and characterize the bacterial flora from the gut of larvae of An. subpictus Grassi (1899) prevalent in Hooghly and explore their roles in host survival and development. Mosquito larvae and adults were collected from field and were maintained in laboratory. Bacterial load in the larval mid-gut was determined, and predominant strains were isolated and characterized by polyphasic approach. Role of these bacteria in larval survival and development were assayed. Bacterial load in the gut of larvae was found to vary in field-collected and lab-reared mosquitoes in different seasons. Morphological, bio-chemical, and molecular analyses explored four common bacterial isolates, namely Bacillus subtilis, Bacillus pumilus, Bacillus cereus, and Proteus vulgaris in the larval gut throughout the year. Larval survival rate was greatly reduced (0.06) and time of pupation was prolonged (17.8 ± 0.57) [days] in the absence of their gut bacteria. Total tissue protein (7.78 ± 0.56) [µg/mg], lipid (2.25 ± 0.19) [µg/mg] & carbohydrate (16.5 ± 0.79) [µg/mg] contents of larvae, and body weight & wing length of adult male (0.17 ± 0.02 & 1.74 ± 0.43) [mm] & female (0.19 ± 0.02 & 1.99 ± 0.46) [mm] mosquitoes were also found to be greatly reduced in the absence of gut bacteria. Developmental characteristics were restored with the introduction of culture suspension of all four resident gut bacterial isolates. Present study indicates that the mosquitoes largely depend on their gut bacteria for their survival and development. So, manipulation or control of this gut bacterial communities might inhibit survival and development of vector mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Mosquitoes were collected by the authors along with the help of field collectors from rural areas of Hooghly, West Bengal, India. The data were collected from the experiments done by the authors in the Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan.

References

  1. Derua, Y. A., Rumisha, S. F., Batengana, B. M., Max, D. A., Stanley, G., Kisinza, W. N., & Mboera, L. E. (2017). Lymphatic filariasis transmission on Mafia Islands, Tanzania: Evidence from xenomonitoring in mosquito vectors. PLoS Neglected Tropical Diseases, 11(10), e0005938.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bartilol, B., Omedo, I., Mbogo, C., Mwangangi, J., & Rono, M. K. (2021). Bionomics and ecology of Anopheles merus along the East and Southern Africa coast. Parasites Vectors, 14, 1–11.

    Article  Google Scholar 

  3. Soleimani-Ahmadi, M., Vatandoost, H., Shaeghi, M., Raeisi, A., Abedi, F., Eshraghian, M. R., Madani, A., Safari, R., Shahi, M., Mojahedi, A., & Poorahmad-Garbandi, F. (2012). Vector ecology and susceptibility in a malaria-endemic focus in southern Islamic Republic of Iran. Eastern Mediterranean Health Journal, 18(10), 1034–1041.

    Article  PubMed  CAS  Google Scholar 

  4. Elleby, R. & Feltelius, V. (2014). Habitat characterization for malaria vector mosquito larvae in Gamo Gofa, Ethiopia. (Dissertation).

  5. Russel, P. F., West, L. S., Manwell, R. D., & Macdonald, G. (1963). Practical Malariology (2nd ed.). Oxford University Press.

    Google Scholar 

  6. Panicker, K. N., Geetha Bai, M., Bheema Rao, U. S., Viswam, K., & Suryanarayanmurthy, U. (1981). Anopheles subpictus, vector of malaria in coastal villages of South-East India. Current Science, 50, 694–695.

    Google Scholar 

  7. Hearth, P. R. J., Abhayawardana, T. A., & Padmelal, U. K. G. K. (1983). A study of the role of different anopheline species in the transmission of human malaria in Sri Lanka. Proceedings of Annual Session of Sri Lanka. Association for the Advancement of Science, 39, 6.

    Google Scholar 

  8. Chatterjee, S., & Chandra, G. (2000). Role of Anopheles subpictus as a primary vector of malaria in an area in India. Japanese Journal of Tropical Medicine and Hygiene, 28(3), 177–181.

    Article  Google Scholar 

  9. Mills, J. N., Gage, K. L., & Khan, A. S. (2010). Potential influence of climate change on vector-borne and zoonotic diseases: A review and proposed research plan. Environmental Health Perspectives, 118(11), 1507–1514.

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Boer, J. G., Robinson, A., Powers, S. J., Burgers, S. L. G. E., Caulfield, J. C., Birkett, M. A., Smallegange, R. C., Genderen, P. J. J. V., Bousema, T., Sauerwein, R. W., Pickett, J. A., Takken, W., & Logan, J. G. (2017). Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions. Science and Reports, 7, 1–9.

    Google Scholar 

  11. Lefevre, T., Ohm, J., Dabire, K. R., Cohuet, A., Choisy, M., Thomas, M. B., & Cator, L. (2018). Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evolutionary Applications, 11(4), 456–469.

    Article  PubMed  Google Scholar 

  12. Kikuchi, Y., Hosokawa, T., Nikoh, N., Meng, X. Y., Kamagata, Y., & Fukatsu, T. (2009). Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biology, 7(1), 1–22.

    Article  Google Scholar 

  13. Mukhopadhyay, P., & Chatterjee, S. (2016). Characterization and control of symbiotic Bacillus cereus isolated from the mid gut of Anopheles subpictus Grassi. Journal of Parasitic Diseases, 40(4), 1414–1421.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roy, M., Chatterjee, S. N., Roy, P., & Dangar, T. K. (2010). Significance of the midgut bacterium Pseudomonas fluorescens on Culex vishnui (Diptera: Culicidae) larval development. International Journal of Tropical Insect Science, 30(4), 182–185.

    Article  Google Scholar 

  15. Fouda, M. A., Hassan, M. I., Al-Daly, A. G., & Hammad, K. M. (2001). Effect of midgut bacteria of Culex pipiens L. on digestion and reproduction. Journal of the Egyptian Society of Parasitology, 31(3), 767–780.

    PubMed  CAS  Google Scholar 

  16. Xia, X., Lan, B., Tao, X., Lin, J., & You, M. (2020). Characterization of Spodoptera litura gut bacteria and their role in feeding and growth of the host. Frontiers in Microbiology, 11, 1–14.

    Article  Google Scholar 

  17. Douglas, A. E. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43, 17–37.

    Article  PubMed  CAS  Google Scholar 

  18. Crotti, E., Rizzi, A., Chouaia, B., Ricci, I., Favia, G., Alma, A., Sacchi, L., Bourtzis, K., Mandrioli, M., Cherif, A., Bandi, C., & Daffonchio, D. (2010). Acetic acid bacteria, newly emerging symbionts of insects. Applied and Environment Microbiology, 76(21), 6963–6970.

    Article  CAS  Google Scholar 

  19. Pais, R., Lohs, C., Wu, Y., Wang, J., & Aksoy, S. (2008). The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the Tsetse fly. Applied and Environment Microbiology, 74(19), 5965–5974.

    Article  CAS  Google Scholar 

  20. Pang, X., Xiao, X., Liu, Y., Zhang, R., Liu, J., Liu, Q., Wang, P., & Cheng, G. (2016). Mosquito C-type lectins maintain gut microbiome homeostasis. Nature Microbiology, 1, 1–11.

    Article  Google Scholar 

  21. Bahia, A. C., Dong, Y., Blumberg, B. J., Mlambo, G., Tripathi, A., BenMarzouk-Hidalgo, O. J., Chandra, R., & Dimopoulos, G. (2014). Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environmental Microbiology, 16(9), 2980–2994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Straif, S. C., Mbogo, C. N., Toure, A. M., Walker, E. D., Kaufman, M., Toure, Y. T., & Beier, J. C. (1998). Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. Journal of Medical Entomology, 35(3), 222–226.

    Article  PubMed  CAS  Google Scholar 

  23. Lindh, J. M., Terenius, O., & Faye, I. (2005). 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Applied and Environmental Microbiology, 71(11), 7217–7223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Briones, A. M., Shililu, J., Githure, J., Novak, R., & Raskin, L. (2008). Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes. ISME Journal, 2, 74–82.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, Y., Gilbreath, T. M., III., Kukutla, P., Yan, G., & Xu, J. (2011). Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One, 6(9), e24767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Boissiere, A., Tchioffo, M. T., Bachar, D., Abate, L., Marie, A., Nsango, S. E., Shahbazkia, H. R., Awono-Ambene, P. H., Levashina, E. A., Christen, R., & Morlais, I. (2012). Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathogens, 8(5), e1002742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chavshin, A. R., Oshaghi, M. A., Vatandoost, H., Pourmand, M. R., Raeisi, A., & Terenius, O. (2014). Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach. Parasites & Vectors, 7, 1–8.

    Article  Google Scholar 

  28. Ngo, C. T., Aujoulat, F., Veas, F., Jumas-Bilak, E., & Manguin, S. (2015). Bacterial diversity associated with wild caught Anopheles mosquitoes from Dak Nong Province, Vietnam using culture and DNA fingerprint. PLoS One, 10(3), e0118634.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Coon, K. L., Brown, M. R., & Strand, M. R. (2016). Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasites & Vectors, 9, 1–12.

    Article  Google Scholar 

  30. World Health Organization. (1992). Report of the WHO Expert Committee on filariasis.

  31. Service, & W. M . (1993). Mosquito ecology: Field sampling methods (pp. 1–988). Chapman and Hall.

    Google Scholar 

  32. Tyagi, B. K., Munirathinam, A., & Venkatesh, A. (2015). A catalogue of Indian mosquitoes. International Journal of Mosquito Research, 2(2), 50–97.

    Google Scholar 

  33. Nagpal, B. N., & Sharma, V, P. (1995). Indian anophelines. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp. 1–416.

  34. Pelczar, M. J., Bard, R. C., Burnett, G. W., Conn, H. J., Demoss, R. D., Euans, E. E., Weiss, F. A., Jennison, M. W., Meckee, A. P., Riker, A. J., Warren, J., & Weeks, O. B. (1957). Manual of microbiological methods Society of American Bacteriology (pp. 1–315). McGraw Hill Book Company Inc.

    Google Scholar 

  35. Collee, J. G., & Miles, P. S. (1989). Tests for identification of bacteria. Practical medical microbiology (pp. 141–160). Churchil Livingstone.

    Google Scholar 

  36. Lacey, L. A. (1997). Manual of techniques in Insect pathology (pp. 1–409). Acad. Press.

    Book  Google Scholar 

  37. Jansen, J. F. G. A., de Brabander-van den Berg, E. M. M., & Meijer, E. W. (1994). Encapsulation of guest molecules into a dendritic box. Science, 266(5188), 1226–1229.

    Article  PubMed  CAS  Google Scholar 

  38. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    PubMed  CAS  Google Scholar 

  39. Brown, A. E. (2005). Benson’s microbiological applications: Laboratory manual in general microbiology. McGraw-Hill Higher Education.

    Google Scholar 

  40. Shibko, S., Koivistoinen, P., Tratnyek, C. A., Newhall, A. R., & Friedman, L. (1967). A method for sequential quantitative separation and determination of protein, RNA, DNA, lipid, and glycogen from a single rat liver homogenate or from a subcellular fraction. Analytical Biochemistry, 19, 514–528.

    Article  PubMed  CAS  Google Scholar 

  41. Nestel, D., Tolmasky, D., Rabossi, A., & Quesada-Allue, L. A. (2003). Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Annals of the Entomological Society of America, 96(3), 237–244.

    Article  CAS  Google Scholar 

  42. Warburg, M. S., & Yuval, B. (1997). Effects of energetic reserves on behavioral patterns of Mediterranean fruit flies (Diptera: Tephritidae). Oecologia, 112, 314–319.

    Article  PubMed  CAS  Google Scholar 

  43. Zhen, Y., & Shi, J. (2011). Evaluation of sample extraction methods for proteomic analysis of coniferous seeds. Acta Physiologiae Plantarum, 33, 1623–1630.

    Article  CAS  Google Scholar 

  44. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  PubMed  CAS  Google Scholar 

  45. Akorli, J., Gendrin, M., Pels, N. A. P., Yeboah-Manu, D., Christophides, G. K., & Wilson, M. D. (2016). Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PLoS One, 11(6), e0157529.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bascunan, P., Nino-Garcia, J. P., Galeano-Castaneda, Y., Serre, D., & Correa, M. M. (2018). Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors. Microbiome, 6, 1–12.

    Article  Google Scholar 

  47. Minakawa, N., Munga, S., Atieli, F., Mushinzimana, E., Zhou, G., Githeko, A. K., & Yan, G. (2005). Spatial distribution of anopheline larval habitats in Western Kenyan highlands: Effects of land cover types and topography. American Journal of Tropical Medicine and Hygiene, 73(1), 157–165.

    Article  PubMed  Google Scholar 

  48. Islam, M. M. M., Shafi, S., Bandh, S. A., & Shameem, N. (2019). Impact of environmental changes and human activities on bacterial diversity of lakes Freshwater Microbiology, Academic Press 105–136

  49. Gao, P., Du, G., Zhao, D., Wei, Q., Zhang, X., Qu, L., & Gong, X. (2021). Influences of seasonal monsoons on the taxonomic composition and diversity of bacterial community in the Eastern Tropical Indian Ocean. Frontiers in Microbiology, 11, 1–16.

    Article  Google Scholar 

  50. Ranasinghe, H. A. K., & Amarasinghe, L. D. (2020). Naturally occurring microbiota in dengue vector mosquito breeding habitats and their use as diet organisms by developing larvae in the Kandy District, Sri Lanka. Biomed Res. Int. 1–12.

  51. Gusmao, D. S., Santos, A. V., Marini, D. C., Russo, E. D. S., Peixoto, A. M. D., Junior, M. B., Berbert-Molina, M. A., & Lemos, F. J. A. (2007). First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): New perspectives for an insect-bacteria association. Memorias do Instituto Oswaldo Cruz, 102(8), 919–924.

    Article  PubMed  Google Scholar 

  52. Djadid, D. N., Jazayeri, H., Raz, A., Favia, G., Ricci, I., & Zakeri, S. (2011). Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS One, 6(12), e28484.

    Article  CAS  Google Scholar 

  53. Anand, A. A. P., Vennison, S. J., Sankar, S. G., Prabhu, D. I. G., Vasan, P. T., Raghuraman, T., Geoffrey, C. J., & Vendan, S. E. (2010). Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Science, 10, 1–20.

    Article  Google Scholar 

  54. Burgess, N. R. H., McDermott, S. N., & Whiting, J. (1973). Aerobic bacteria occurring in the hind-gut of the cockroach, Blatta orientalis. American Journal of Hygiene, 71(1), 1–8.

    Article  CAS  Google Scholar 

  55. Chatterjee, S., & Ghosh, T. S. (2010). Characterization of ampicillin resistant Bacillus sp. isolated from the midgut of Anopheles barbirostris (Van der Wulp) and its role on larval development. Journal of Pure and Applied Microbiology, 4(2), 875–878.

    Google Scholar 

  56. Suwanchaichinda, C., & Paskewitz, S. M. (1998). Effects of larval nutrition, adult body size, and adult temperature on the ability of Anopheles gambiae (Diptera: Culicidae) to melanize Sephadex beads. Journal of Medical Entomology, 35(2), 157–161.

    Article  PubMed  CAS  Google Scholar 

  57. Linenberg, I., Christophides, G. K., & Gendrin, M. (2016). Larval diet affects mosquito development and permissiveness to Plasmodium infection. Science and Reports, 6, 1–10.

    Google Scholar 

  58. Souza, R. S., Virginio, F., Riback, T. I. S., Suesdek, L., Barufi, J. B., & Genta, F. A. (2019). Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Frontiers in Physiology, 10, 1–24.

    Article  Google Scholar 

  59. Sharma, P., Mohan, L., Dua, K. K., & Srivastava, C. N. (2011). Status of carbohydrate, protein and lipid profile in the mosquito larvae treated with certain phytoextracts. Asian Pacific Journal of Tropical Medicine, 4(4), 301–304.

    Article  PubMed  Google Scholar 

  60. Reinhold, J. M., Lazzari, C. R., & Lahondere, C. (2018). Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A review. Insects., 9, 2–17.

    Article  Google Scholar 

  61. Azambuja, P., Garcia, E. S., & Ratcliffe, N. A. (2005). Gut microbiota and parasite transmission by insect vectors. Trends in Parasitology, 21(12), 568–572.

    Article  PubMed  Google Scholar 

  62. Minard, G., Mavingui, P., & Moro, C. V. (2013). Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites & Vectors, 6(1), 1–12.

    Article  Google Scholar 

  63. Taracena, M. L., Oliveira, P. L., Almendares, O., Umana, C., Lowenberger, C., Dotson, E. M., Paiva-Silva, G. O., & Pennington, P. M. (2015). Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Neglected Tropical Diseases, 9(2), e0003358.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Burdwan University authority for providing laboratory facilities to carry out the work. The authors are thankful to Zoological Survey of India for the identification of mosquito specimens. The authors are also thankful to University Grant Commission (UGC, India) and WBDSTBT, Govt. of West Bengal, for providing financial support. Authors are also very much thankful to DST PURSE, DST FIST for providing instrumental facilities.

Funding

This research was supported by funding from University Grant Commission, India, and WBDSTBT, Govt. of West Bengal.

Author information

Authors and Affiliations

Authors

Contributions

Author Madhurima Seal conducted all the experiments, analyzed the data, and wrote the first draft of manuscript. Author Soumendranath Chatterjee designed the work, supervised all the experiments conducted, revised, and edited the manuscript. Both the authors red and approved the final version of the manuscript.

Corresponding author

Correspondence to Soumendranath Chatterjee.

Ethics declarations

Ethics Approval

NA.

Consent to Participate

All of the authors consent to participate.

Consent for Publication

The authors hereby give full consent for publication of the data.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seal, M., Chatterjee, S. Characterizations of Larval Gut Bacteria of Anopheles subpictus Grassi (1899) and their Role in Mosquito Development in Hooghly, West Bengal, India. Appl Biochem Biotechnol 194, 6140–6163 (2022). https://doi.org/10.1007/s12010-021-03706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03706-6

Keywords

Navigation