Skip to main content
Log in

Mathematical Description of the Enzymatic Activity of Proteins with Ionizable Groups Exhibiting Deviations from the Henderson-Hasselbalch Equation

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The ionization equilibrium implied in the calculation of the specific activity is classically described through the Henderson-Hasselbalch equation. An extension for the description of anomalous ionization profiles using the Hill equation is presented in this communication. The proposed framework was applied to the description of the specific enzymatic activity curve as a function of pH of five enzymes presenting different ionization states in their active site. The developed equation improves the description of relative enzymatic curves that deviate from the bell curve predicted by the application of the Henderson-Hasselbalch equation, regardless of the ionization scheme related to the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

VBA codes of spreadsheet macros used to calculate activity curves are available from the corresponding author upon request.

Abbreviations

a :

Relative enzymatic activity

\({A}_{j}\) :

Ionizable group j in non-protonated form

\({A}_{j}^{+}\) :

Ionizable group j in protonated form

k :

Active configuration of the active site

n :

Number of ionizable groups in the active site

N :

Number of experimental points

z k :

Net charge of the active site in configuration k

\({\alpha }_{j}\) :

Fraction of ionized groups j

\({\beta }_{j}\) :

Parameter in Hill's Eq. (3)

\({\varepsilon }_{jk}\) :

Charge of group j in configuration k

\({\nu }_{j}\) :

Charge of group j in its ionized state

π :

Specific enzymatic activity

References

  1. Linderstrøm-Lang, K. (1924). On the ionization of proteins. Comptes-rendus des Travaux du Laboratoire Carlsberg, 15, 1–20.

    Google Scholar 

  2. Green, A. A. (1931). Studies in the physical chemistry of the proteins. Journal of Biological Chemistry, 93, 517–541.

    Article  CAS  Google Scholar 

  3. Grönwall, A. (1941). Studies on the solubility of lactoglobulin. Comptes-rendus des Travaux du Laboratoire Carlsberg, 24, 185–200.

    Google Scholar 

  4. Hitchcock, D. I. (1924). The solubility of tyrosine in acid and alkali. Journal of General Physiology, 6, 747–757.

    Article  CAS  Google Scholar 

  5. Nass, K. K. (1988). Representation of the solubility behavior of amino acids in water. AIChE Journal, 34, 1257–1266.

    Article  CAS  Google Scholar 

  6. Gupta, R. B., & Heidemann, R. A. (1990). Solubility models for amino acids and antibiotics. AIChE Journal, 36, 333–341.

    Article  CAS  Google Scholar 

  7. Franco, L. F. M., & Pessôa Filho, P. A. (2011). On the solubility of proteins as a function of pH: Mathematical development and application. Fluid Phase Equilibr., 306, 242–250.

    Article  CAS  Google Scholar 

  8. Franco, L. F. M., Mattedi, S., & Pessôa Filho, P. A. (2013). A new approach for the thermodynamic modeling of the solubility of amino acids and β-lactam compounds as a function of pH. Fluid Phase Equilibr., 354, 38–46.

    Article  CAS  Google Scholar 

  9. Di Cera, E., Gill, S. J., & Wyman, J. (1988). Binding capacity: Cooperativity and buffering in biopolymers. Proceedings of the National academy of Sciences of the United States of America, 85, 449–452.

    Article  Google Scholar 

  10. Coulther, T. A., Ko, J., & Ondrechen, M. J. (2021). Amino acid interactions that facilitate enzyme catalysis. The Journal of Chemical Physics, 154, 195101.

    Article  CAS  Google Scholar 

  11. Ondrechen, M. J., Clifton, J. G., & Ringe, D. (2001). THEMATICS: A simple computational predictor of enzyme function from structure. Proceedings. National Academy of Sciences. United States of America, 98, 12473–12478.

    Article  CAS  Google Scholar 

  12. Shehadi, I. A., Yang, H., & Ondrechen, M. J. (2002). Future directions in protein function prediction. Molecular Biology Reports, 29, 329–335.

    Article  CAS  Google Scholar 

  13. Ringe, D., Wei, Y., Boino, K. R., & Ondrechen, M. J. (2004). Protein structure to function: Insights from computation. Cellular and Molecular Life Sciences, 61, 387–392.

    Article  CAS  Google Scholar 

  14. Onufriev, A., Case, D. A., & Ullmann, G. M. (2001). A novel view of pH titration in biomolecules. Biochemistry, 40, 3413–3419.

    Article  CAS  Google Scholar 

  15. Kuramitsu, S., Ikeda, K., Hamaguchi, K., Fujio, H., Amano, T., Miwa, S., & Nishina, T. (1974). Ionization constants of Glu 35 and Asp 52 in hen, turkey, and human lysozymes. Journal of Biochemistry, 76, 671–683.

    CAS  PubMed  Google Scholar 

  16. Herries, D. G., Mathias, A. P., & Rabin, B. R. (1962). The active site and mechanism of action of bovine pancreatic ribonuclease 3. The pH-dependence of the kinetic parameters for the hydrolysis of cytidine 2’,3’-phosphate. The Biochemical Journal, 85, 127–134.

    Article  CAS  Google Scholar 

  17. Plaut, B., & Knowles, J. R. (1972). pH-dependence of the triose phosphate isomerase reaction. The Biochemical Journal, 129, 311–320.

    Article  CAS  Google Scholar 

  18. Tijskens, L. M. M., Greiner, R., Biekman, E. S. A., & Konietzny, U. (2001). Modeling the effect of temperature and pH on activity of enzymes: The case of phytases. Biotechnology and Bioengineering, 72, 323–330.

    Article  CAS  Google Scholar 

  19. Tijskens, P. (2012) Personal communication.

  20. McLaren, A. D., & Estermann, E. F. (1957). Influence of pH on the activity of chymotrypsin at a solid-liquid interface. Archives of Biochemistry and Biophysics, 68, 157–160.

    Article  CAS  Google Scholar 

  21. Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33, W368–W371.

    Article  CAS  Google Scholar 

  22. Myers, J., Grothaus, G., Narayanan, S., & Onufriev, A. (2006). A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules. Proteins, 63, 928–938.

    Article  CAS  Google Scholar 

  23. Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulation. Nucleic Acids Research, 40, W537–W541.

    Article  CAS  Google Scholar 

  24. Karibian, D., Laurent, C., Labouesse, J., & Labouesse, B. (1968). Study of the groups controlling the activity and conformation of chymotrypsin at alkaline pH: N-terminal isoleucine and tyrosines. European Journal of Biochemistry, 5, 260–269.

    Article  CAS  Google Scholar 

  25. Vocadlo, D. J., Davies, G. J., Laine, R., & Withers, S. G. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature, 412, 835–838.

    Article  CAS  Google Scholar 

  26. Webb, H., Tynan-Connolly, B. M., Lee, G. M., Farrell, D., O’Meara, F., Søndergaard, C. R., Teilum, K., Hewage, C., McIntosh, L. P., & Nielsen, J. E. (2011). Remeasuring HEWL pKa values by NMR spectroscopy: Methods, analysis, accuracy, and implications for theoretical pKa calculations. Proteins, 79, 685–702.

    Article  CAS  Google Scholar 

  27. Findlay, D., Herries, D. G., Mathias, A. P., Rabin, B. R., & Ross, C. A. (1962). The active site and mechanism of action of bovine pancreatic ribonuclease 7. The catalytic mechanism. Biochemical Journal, 85, 152–153.

    Article  CAS  Google Scholar 

  28. Raines, R. T. (2004). Active site of ribonuclease A. In M. A. Zenkova (Ed.), Artificial nucleases (pp. 19–32). Springer - Verlag.

    Chapter  Google Scholar 

  29. Bender, M. L., Gibian, M. J., & Whelan, D. J. (1966). The alkaline pH dependence of chymotrypsin reactions: Postulation of a pH-dependent intramolecular competitive inhibition. Proceedings. National Academy of Sciences United States of America, 56, 833–839.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PAPF gratefully thanks Prof. Dr. John M. Prausnitz (University of California, Berkeley, USA) for the invaluable discussions on the subject. Thanks are due also to Prof. Dr. Pol Tijskens (Wageningen University, The Netherlands) and Prof. Dr. Ralf Greiner (Max Rubner-Institut, Karlsruhe, Germany) for sharing their data on the activity of phytase from Klebsiella terrigena.

Funding

This study received financial support through grant 2012/23860–2, Sao Paulo Research Foundation (FAPESP), and grant 305747/2020–7, from the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L. F. M. F. and P. A. P. F.; methodology: L. F. M. F. and P. A. P. F.; formal analysis: P. A. P. F.; funding acquisition: P. A. P. F.; investigation: P. A. P. F.; software: P. A. P. F.; writing—original draft: P. A. P. F.; writing—review and editing: L. F. M. F. and P. A. P. F.

Corresponding author

Correspondence to Pedro de Alcantara Pessoa Filho.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, L.F.M., Pessoa Filho, P.d.A. Mathematical Description of the Enzymatic Activity of Proteins with Ionizable Groups Exhibiting Deviations from the Henderson-Hasselbalch Equation. Appl Biochem Biotechnol 194, 1221–1234 (2022). https://doi.org/10.1007/s12010-021-03700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03700-y

Keywords

Navigation