Skip to main content
Log in

Integrating the Carboxylate Platform into a Red Seaweed Biorefinery

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Macroalgae are an important source of food, fertilizer, hydrocolloids, and healthful bioactive components. Macroalgae are also being considered sources of biofuels, which require minimal demands for arable land, fresh water, or fertilizers. In this study, we explored the possibility of developing a red seaweed biorefinery process to extract carrageenan while producing chemical or biofuel co-products derived from the carrageenan extraction wastes. A common approach to processing organic wastes is to generate biogas; however, in this study, we targeted a potentially higher value option by applying acidogenic digestion to convert extraction wastes to carboxylic acids and derived compounds. Using an open culture of microorganisms, wastes from a carrageenan extraction plant were converted to mixed carboxylic acids, which were then neutralized and thermally decomposed to a variety of ketones. Batch digestions of the wastes were carried out at temperatures of 35 °C and 55 °C. Either calcium carbonate or ammonium bicarbonate was used as buffer. A solid–liquid counter-current percolation fermentation was operated in four stages at 35 °C. Digestion produced carboxylic acids ranging in chain length from one to seven carbons. The mesophilic temperature gave higher carboxylic acid yield and longer chain acids, with the highest acid titer reaching 18 g L−1. Thermal decomposition of carboxylate salts produced a mixture of ketones which contained acetone, 3-pentanone, 2-hexanone, 2-heptanone, 3-heptanone, and 4-octanone as major products. These ketones could be sold as chemicals or hydrogenated to form corresponding chain length secondary alcohols which deliver higher energy density than ethanol.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No additional data to present.

Code Availability

Not applicable.

References

  1. Wei, N., Quarterman, J., & Jin, Y. S. (2013). Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends in biotechnology, 31(2), 70–77.

    Article  CAS  Google Scholar 

  2. Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M. (2016). A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews, 54, 473–481.

    Article  CAS  Google Scholar 

  3. Gao, K., & McKinley, K. R. (1994). Use of macroalgae for marine biomass production and CO2 remediation: A review. Journal of Applied Phycology, 6(1), 45–60.

    Article  Google Scholar 

  4. John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource technology, 102(1), 186–193.

    Article  CAS  Google Scholar 

  5. Stiger-Pouvreau, V., Bourgougnon, N., & Deslandes, E. (2016). Carbohydrates from seaweeds. Seaweed in health and disease prevention (pp. 223–274). Academic Press.

    Chapter  Google Scholar 

  6. Goh, C. S., & Lee, K. T. (2010). A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy Reviews, 14(2), 842–848.

    Article  CAS  Google Scholar 

  7. Vergara-Fernández, A., Vargas, G., Alarcón, N., & Velasco, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338–344.

    Article  Google Scholar 

  8. Anjaneyulu, K., Tarwadi, S. J., & Mehta, D. J. (1989). Anaerobic digestion of seaweed for biogas: A kinetic evaluation. Journal of Chemical Technology and Biotechnology, 45, 5–14.

    Article  CAS  Google Scholar 

  9. Milledge, J. J., Nielsen, B. V., Maneein, S., & Harvey, P. J. (2019). A brief review of anaerobic digestion of algae for bioenergy. Energies, 12(6), 1166.

    Article  CAS  Google Scholar 

  10. Maia, M. R. G., Fonseca, A. J. M., Oliveira, H. M., Mendonça, C., & Cabrita, A. R. J. (2016). The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Scientific Reports, 6, 32321.

    Article  CAS  Google Scholar 

  11. Abbott, D. W., Aasen, I. M., Beauchemin, K. A., Grondahl, F., Gruninger, R., Hayes, M., Huws, S., Kenny, D. A., Krizsan, S. J., Kirwan, S. F., Lind, V., Meyer, U., Ramin, M., Theodoridou, K., von Soosten, D., Walsh, P. J., Waters, S., & Xing, X. (2020). Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals, 10, 2432.

    Article  Google Scholar 

  12. Agler, M. T., Wrenn, B. A., Zinder, S. H., & Angenent, L. T. (2011). Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform. Trends in Biotechnology, 29(2), 70–78.

    Article  CAS  Google Scholar 

  13. Baddam, R., & van Walsum, G. P. (2017). Acidogenic digestion of pre-pulping extracts for production of fuels and bioproducts via carboxylate platform processing. Applied Biochemistry and Biotechnology, 182(3), 1076–1094.

    Article  CAS  Google Scholar 

  14. Bastidas-Oyanedel, Juan-Rodrigo., Bonk, Fabian, Thomsen, Mette Hedegaard, & Schmidt, Jens Ejbye. (2015). Dark fermentation biorefinery in the present and future (bio)chemical industry. Reviews in Environmental Science and Biotechnology. https://doi.org/10.1007/s11157-015-9369-3

    Article  Google Scholar 

  15. Álvarez-Viñas, M., Flórez-Fernández, N., Torres, M. D., & Domínguez, H. (2019). Successful approaches for a red seaweed biorefinery. Marine Drugs, 17(11), 620.

    Article  Google Scholar 

  16. Ingle, K., Vitkin, E., Robin, A., Yakhini, Z., Mishori, D., & Golberg, A. (2018). Macroalgae biorefinery from Kappaphycusalvarezii: Conversion modeling and performance prediction for India and Philippines as examples. BioEnergy Research, 11, 22–32.

    Article  CAS  Google Scholar 

  17. Holtzapple, M. T., Davison, R. R., Ross, M. K., Aldrett-Lee, S., Nagwani, M., Lee, C. M., Lee, C., Adelson, S., Kaar, W., Gaskin, D., Shirage, H., Chang, N. S., Chang, V. S., & Loescher, M. E. (1999). Biomass conversion to mixed alcohol fuels using the MixAlco process. Applied Biochemistry and Biotechnology, 77–79, 609–631.

    Article  Google Scholar 

  18. Holtzapple, M. T., & Granda, C. B. (2009). Carboxylate platform: The MixAlco process Part 1: Comparison to three biomass conversion platforms. Applied Biochemistry and Biotechnology, 156(1–3), 95–106.

    Article  Google Scholar 

  19. Steinbüchel, A., & Rhee, S. K. (2005). Polysaccharides and polyamides in the food industry. Wiley-VCH Verlag, GmbH & Co.

    Google Scholar 

  20. McHugh, D. J. (2003) A guide to the seaweed industry, FAO Fisheries Technical Paper 441. Food and Agriculture Organization of the United Nations, Rome. < http://www.fao.org/DOCREP/006/Y4765E/y4765e00.htm> accessed on June 2021.

  21. Thanakoses, P., Black, A. S., & Holtzapple, M. T. (2003). Fermentation of corn stover to carboxylic acids. Biotechnology and Bioengineering, 83(2), 191–200.

    Article  CAS  Google Scholar 

  22. Blackman, E. D., & van Walsum, G. P. (2009). Production of renewable bioproducts and reduction of phosphate pollution through the lime pretreatment and acidogenic digestion of dairy manure. Environmental Progress and Sustainable Energy, 28, 121–133.

    Article  CAS  Google Scholar 

  23. Pham, V., Holtzapple, M., & EI-Halwagi, M. (2010). Techno-economic analysis of biomass to fuel conversion via the MixAlco process. Journal of Industrial Microbiology and Biotechnology, 37(11), 1157–1168.

    Article  CAS  Google Scholar 

  24. Engelberth, A. S., Wheeler, M. C., & van Walsum, G. P. (2018). Techno-Economic comparison of three scenarios for upgrading a hemicellulose-rich pre-pulping extract to mixed-alcohols. Biofuels, Bioproducts and Biorefining, 12(6), 1082–1094.

    Article  CAS  Google Scholar 

  25. Ross, M. K., & Holtzapple, M. T. (2001). Laboratory method for high-solids countercurrent fermentations. Applied Biochemistry and Biotechnology, 94(2), 111–126.

    Article  CAS  Google Scholar 

  26. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Wolfe, J. (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples: Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510–42621, National Renewable Energy Laboratory, Colorado.

  27. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008) Determination of ash in biomass: Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510–42622, National Renewable Energy Laboratory, Colorado.

  28. Aiello-Mazzarri, C., Agbogbo, F. K., & Holtzapple, M. T. (2006). Conversion of municipal solid waste to carboxylic acids using mixed culture of mesophilic microorganisms. Bioresource Technology, 97, 47–56.

    Article  CAS  Google Scholar 

  29. Agbogbo, F. K. (2005) Anaerobic fermentation of rice straw and chicken manure to carboxylic acids. Ph.D. Dissertation, Texas A&M University, Texas.

  30. EI-Ssarraf, W. M., & EI-Shaarawy, G. (1994). Chemical composition of some marine algae from the mediterranean sea of Alexandria, Egypt. The Bulletin of the High Institute of Public Health, 24, 3.

    Google Scholar 

  31. Thanakoses, P., (2002) Conversion of bagasse and corn stover to mixed carboxylic acids using a mixed culture of mesophilic microorganisms. Ph.D. Dissertation, Texas A&M University, Texas.

  32. Cui, S. W. (2005). Food carbohydrates: Chemistry, physical properties, and applications. CRC Press, Taylor & Francis Group.

    Book  Google Scholar 

  33. Bonk, F., Bastidas-Oyanedel, J.-R., Yousef, A. F., & Schmidt, J. E. (2017). Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresource Technology, 238(2017), 416–424.

    Article  CAS  Google Scholar 

  34. Bhatia, M. (2011) Thermal conversion of carboxylate salts and catalytic ketone hydrogenation. M.S. Thesis, University of Maine, Orono, Maine.

  35. Granda, C., Holtzapple, M., Luce, G., Searcy, K., & Mamrosh, D. (2009). Carboxylate platform: The MixAlco process part 2: Process economics. Applied Biochemistry and Biotechnology, 156, 107–124.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the support from FMC Biopolymer Rockland, Maine, who provided the Algefiber®. We thank Dr. Martin Lawoko, Dr. Sedat Beis, Dr. Diane Smith, Dr. Byung-Hwan Um, Keith Hodgins, Nick Hill, Justin Crouse, and Amos Cline for the analytical and technical support. Special thanks to Dr. Adriaan R.P van Heiningen and Dr. Clayton Wheeler for their insight and guidance.

Funding

US Department of Energy grant No. DE-FG36-08GO18165 provided the funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by S. A. Karunarathne, overseen by G. P. van Walsum. The first draft of the manuscript was written by S. A. Karunarathne and all authors contributed to previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to G. Peter van Walsum.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Karunarathne and van Walsum both consent to the publication of this material.

Competing interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• By-products from seaweed processing are suitable for carboxylate platform processing.

• Carrageenan by-product solids were converted to mixed carboxylic acids and ketones.

• Fermentation at mesophilic temperatures with CaCO3 buffer gave optimal acid yields.

• Four percolation columns in series demonstrated countercurrent fermentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunarathne, S.A., van Walsum, G.P. Integrating the Carboxylate Platform into a Red Seaweed Biorefinery. Appl Biochem Biotechnol 194, 1235–1258 (2022). https://doi.org/10.1007/s12010-021-03699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03699-2

Keywords

Navigation