Skip to main content
Log in

Determination of L-Phenylalanine in Human Plasma Samples with New Fluorometric Method

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The measurement of phenylalanine in biological fluids for the diagnosis of phenylketonuria (PKU) in newborns and the monitoring/therapeutic drug monitoring of individuals with PKU are especially important. Owing to the importance of PKU monitoring in clinical medicine, a new fluorometric method was developed for the determination of L-phenylalanine in serum samples. This method is based on the relationship between phenylalanine ammonia-lyase (PAL) and o-phthalaldehyde (OPA). PAL catalyzes the conversion of phenylalanine to ammonia and trans-cinnamic acid. The formed ammonia reacts with OPA in the presence of sodium sulfite, giving a fluorescent product. The presence of sulfide in an alkaline environment prevents OPA from reacting with other amino acids while allowing it to react only with ammonia. Method characterization and optimization studies, such as the effects of pH, temperature, and interferents, were carried out. The amount of L-phenylalanine in a human serum sample was successfully determined by using the fluorescence emission intensity of the fluorescent product formed as a result of the reaction between OPA and ammonia. The linear range of the method is between 10 μM and 10 mM. The obtained result showed good agreement with the results of the biochemistry analysis laboratory. Recoveries of 95.41% and 73.39% were obtained for phenylalanine and ammonia, respectively. This PAL–OPA–based fluorometric method for phenylalanine is practical, easy to operate, low cost, highly sensitive, and selective and can also be used for the simultaneous determination of ammonia in human serum samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Not applicable

Code Availability

Not applicable

References

  1. Blau, N., Van Spronsen, F. J., & Levy, H. L. (2010). Phenylketonuria. The Lancet, 376(9750), 1417–1427.

    Article  CAS  Google Scholar 

  2. Ikeda, K., Schiltz, E., Fujii, T., Takahashi, M., Mitsui, K., Kodera, Y., & Nishimura, H. (2005). Phenylalanine ammonia-lyase modified with polyethylene glycol: Potential therapeutic agent for phenylketonuria. Amino Acids, 29(3), 283–287.

    Article  CAS  Google Scholar 

  3. Levy, H. L., Sarkissian, C. N., & Scriver, C. R. (2018). Phenylalanine ammonia lyase (PAL): From discovery to enzyme substitution therapy for phenylketonuria. Molecular Genetics and Metabolism, 124(4), 223–229.

    Article  CAS  Google Scholar 

  4. Sumaily, K. M., & Mujamammi, A. H. (2017). Phenylketonuria: A new look at an old topic, advances in laboratory diagnosis, and therapeutic strategies. International Journal of Health Sciences, 11(5), 63.4.

    Google Scholar 

  5. Vardy, E. R., MacDonald, A., Ford, S., & Hofman, D. L. (2020). Phenylketonuria, co-morbidity, and ageing: A review. Journal of Inherited Metabolic Disease, 43(2), 167–178.

    Article  Google Scholar 

  6. Scriver, C. R. (2007). The PAH gene, phenylketonuria, and a paradigm shift. Human Mutation, 28(9), 831–845.

    Article  CAS  Google Scholar 

  7. Mo, X. M., Li, Y., Tang, A. G., & Ren, Y. P. (2013). Simultaneous determination of phenylalanine and tyrosine in peripheral capillary blood by HPLC with ultraviolet detection. Clinical Biochemistry, 46(12), 1074–1078.

    Article  CAS  Google Scholar 

  8. Dinu, A., & Apetrei, C. (2020). A review on electrochemical sensors and biosensors used in phenylalanine electroanalysis. Sensors, 20(9), 2496.

    Article  CAS  Google Scholar 

  9. Kand’ár, R., & Žáková, P. (2009). Determination of phenylalanine and tyrosine in plasma and dried blood samples using HPLC with fluorescence detection. Journal of Chromatography B, 877(30), 3926–3929.

    Article  Google Scholar 

  10. Li, C. F., Du, L. M., Wu, H., & Chang, Y. X. (2011). Determination of L-phenylalanine by cucurbit [7] uril sensitized fluorescence quenching method. Chinese Chemical Letters, 22(7), 851–854.

    Article  CAS  Google Scholar 

  11. Gerasimova, N. S., Steklova, I. V., & Tuuminen, T. (1989). Fluorometric method for phenylalanine microplate assay adapted for phenylketonuria screening. Clinical Chemistry, 35(10), 2112–2115.

    Article  CAS  Google Scholar 

  12. Neurauter, G., Scholl-Bürgi, S., Haara, A., Geisler, S., Mayersbach, P., Schennach, H., & Fuchs, D. (2013). Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clinical Biochemistry, 46(18), 1848–1851.

    Article  CAS  Google Scholar 

  13. Ciolacu, F. L., Ardelean, A., Țurcuș, V., Mândruțiu, I., Belengeanu, A. D., Bechet, D., & Frențescu, L. (2015). A simple, sensitive and highly accurate procedure for plasma phenylalanine determination by HPLC. Acta Endocrinologica (Buc), 11(2), 143–146.

    Article  Google Scholar 

  14. Ceglarek, U., Müller, P., Stach, B., Bührdel, P., Thiery, J., & Kiess, W. (2002). Validation of the phenylalanine/tyrosine ratio determined by tandem mass spectrometry: Sensitive newborn screening for phenylketonuria. Clinical Chemistry and Laboratory Medicine (CCLM), 40(7), 693–697.

    Article  CAS  Google Scholar 

  15. Freeto, S., Mason, D., Chen, J., Scott, R. H., Narayan, S. B., & Bennett, M. J. (2007). A rapid ultra-performance liquid chromatography tandem mass spectrometric method for measuring amino acids associated with maple syrup urine disease, tyrosinaemia and phenylketonuria. Annals of Clinical Biochemistry, 44(5), 474–481.

    Article  CAS  Google Scholar 

  16. Xiong, X., Sheng, X., Liu, D., Zeng, T., Peng, Y., & Wang, Y. (2015). A GC/MS-based metabolomic approach for reliable diagnosis of phenylketonuria. Analytical and Bioanalytical Chemistry, 407(29), 8825–8833.

    Article  CAS  Google Scholar 

  17. Arslan, H., Ünal, K., Koyuncu, E. A., Yildirim, E., & Arslan, F. (2020). Development of a novel phenylalanine biosensor for diagnosis of phenylketonuria. IEEE Sensors Journal, 20(20), 12127–12133.

    Article  CAS  Google Scholar 

  18. Arakawa, T., Koshida, T., Gessei, T., Miyajima, K., Takahashi, D., Kudo, H., & Mitsubayashi, K. (2011). Biosensor for L-phenylalanine based on the optical detection of NADH using a UV light emitting diode. Microchimica Acta, 173(1–2), 199–205.

    Article  CAS  Google Scholar 

  19. Dashtian, K., Hajati, S., & Ghaedi, M. (2020). L-phenylalanine-imprinted polydopamine-coated CdS/CdSe n-n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring. Biosensors and Bioelectronics, 165, 112346. https://doi.org/10.1016/j.bios.2020.112346

    Article  CAS  PubMed  Google Scholar 

  20. Sun, B., Wang, Z., Wang, X., Qiu, M., Zhang, Z., Wang, Z., & Jia, S. (2020). Based biosensor based on phenylalanine ammonia lyase hybrid nanoflowers for urinary phenylalanine measurement. International Journal of Biological Macromolecules, 166, 601–610. https://doi.org/10.1016/j.ijbiomac.2020.10.218

  21. Kawatra, A., Dhankhar, R., Mohanty, A., & Gulati, P. (2020). Biomedical applications of microbial phenylalanine ammonia lyase: Current status and future prospects. Biochimie, 177, 142–152. https://doi.org/10.1016/j.biochi.2020.08.009

    Article  CAS  PubMed  Google Scholar 

  22. Babaoğlu Aydaş, S., Şirin, S., & Aslim, B. (2016). Biochemical analysis of Centaurea depressa phenylalanine ammonia lyase (PAL) for biotechnological applications in phenylketonuria (PKU). Pharmaceutical Biology, 54(12), 2838–2844.

    Article  Google Scholar 

  23. Al Hafid, N., & Christodoulou, J. (2015). Phenylketonuria: A review of current and future treatments. Translational Pediatrics, 4(4), 304.

    PubMed  PubMed Central  Google Scholar 

  24. Khadilkar, P., Kelkar, V. D., & Khan, A. (2013). An optical biosensor employing phenylalanine ammonia lyase-immobilised films for phenylketonuria detection.

  25. Wang, Z., Chen, Y. Z., Zhang, S., & Zhou, Z. (2006). Investigation of a phenylalanine-biosensor system for phenylketonuria detection. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (pp. 1913–1916).

  26. Stasyuk, N., Gayda, G., Yepremyan, H., Stepien, A., & Gonchar, M. (2017). Fluorometric enzymatic assay of l-arginine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 170, 184–190.

    Article  CAS  Google Scholar 

  27. Xiang, L., & Moore, B. S. (2005). Biochemical characterization of a prokaryotic phenylalanine ammonia lyase. Journal of Bacteriology, 187(12), 4286–4289.

    Article  CAS  Google Scholar 

  28. Wieder, K. J., Palczuk, N. C., van Es, T., & Davis, F. F. (1979). Some properties of polyethylene glycol: Phenylalanine ammonia-lyase adducts. Journal of Biological Chemistry, 254(24), 12579–12587.

    Article  CAS  Google Scholar 

  29. Gardner, W. S., & St. John, P. A. (1991). High-performance liquid chromatographic method to determine ammonium ion and primary amines in seawater. Analytical Chemistry, 63(5), 537–540.

    Article  CAS  Google Scholar 

  30. Zhang, M., Zhang, Y., Ren, S., Zhang, Z., Wang, Y., & Song, R. (2018). Optimization of a precolumn OPA derivatization HPLC assay for monitoring of l-asparagine depletion in serum during l-asparaginase therapy. Journal of Chromatographic Science, 56(9), 794–801.

    Article  CAS  Google Scholar 

  31. Jafari, P., Beigi, S. M., Yousefi, F., Aghabalazadeh, S., Mousavizadegan, M., Hosseini, M., & Ganjali, M. R. (2021). Colorimetric biosensor for phenylalanine detection based on a paper using gold nanoparticles for phenylketonuria diagnosis. Microchemical Journal, 163, 105909.

    Article  CAS  Google Scholar 

  32. Thiessen, G., Robinson, R., De Los Reyes, K., Monnat, R. J., & Fu, E. (2015). Conversion of a laboratory-based test for phenylalanine detection to a simple paper-based format and implications for PKU screening in low-resource settings. The Analyst, 140(2), 609–615.

    Article  CAS  Google Scholar 

  33. Stroup, B. M., Ney, D. M., Murali, S. G., Rohr, F., Gleason, S. T., van Calcar, S. C., & Levy, H. L. (2017). Metabolomic insights into the nutritional status of adults and adolescents with phenylketonuria consuming a low-phenylalanine diet in combination with amino acid and glycomacropeptide medical foods. Journal of Nutrition and Metabolism, 2017, 1–17. https://doi.org/10.1155/2017/6859820

    Article  CAS  Google Scholar 

  34. Weetch, E., & MacDonald, A. (2006). The determination of phenylalanine content of foods suitable for phenylketonuria. Journal of Human Nutrition and Dietetics, 19(3), 229–236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Scientific and the Technological Research Council of Turkey for the support.

Funding

This research was supported by the Scientific and Technological Research Council of Turkey with 2209-A support program.

Author information

Authors and Affiliations

Authors

Contributions

Tolga Sarı: Analysis, design, resources, investigation, data/evidence collection, writing—original draft.

Süreyya Dede: Analysis, conceptualization, resources, investigation, data/evidence collection, writing—original draft.

Büşra Yusufoğlu: Analysis, conceptualization, resources, data/evidence collection, writing—original draft.

Emine Karakuş: Conceptualization, design, resources, investigation project administration, data/evidence collection, writing—reviewing and editing.

All the authors read and approved the manuscript.

Corresponding author

Correspondence to Emine Karakuş.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants by any of the authors.

Consent to Participate

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarı, T., Dede, S., Yusufoğlu, B. et al. Determination of L-Phenylalanine in Human Plasma Samples with New Fluorometric Method. Appl Biochem Biotechnol 194, 1259–1270 (2022). https://doi.org/10.1007/s12010-021-03694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03694-7

Keywords

Navigation