Skip to main content

Advertisement

Log in

Increased Production of Colanic Acid by an Engineered Escherichia coli Strain, Mediated by Genetic and Environmental Perturbations

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Colanic acid (CA) is a major exopolysaccharide synthesized by Escherichia coli that serves as a constituent of biofilm matrices. CA demonstrates potential applications in the food, cosmetics, and pharmaceutical industry. Moreover, l-fucose, a monomeric constituent of CA, exhibits various physiological activities, such as antitumor, anti-inflammatory, and skin-whitening. Here, the effects of genetic and environmental perturbations were investigated for improving CA production by E. coli. When rcsF, a positive regulator gene of CA synthesis, was expressed in E. coli ΔwaaF, a CA-producing strain constructed previously, the CA titer increased to 3051.2 mg/L as compared to 2052.8 mg/L observed with E. coli ΔwaaF. Among the environmental factors tested, namely, osmotic and oxidative stresses and pH, pH was a primary factor that significantly improved CA production. When the pH of the culture medium of E. coli ΔwaaF + rcsF was maintained at 7, the CA titer significantly increased to 4351.6 mg/L. The CA yield obtained with E. coli ΔwaaF + rcsF grown at pH 7 was 5180.4 mg CA/g dry cell weight, which is the highest yield of CA reported so far. This engineered E. coli system with optimization of environmental conditions can be employed for fast and economically-feasible production of CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manucript.

Code Availability

Not applicable.

References

  1. Danese, P. N., Pratt, L. A., & Kolter, R. (2000). Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. Journal of Bacteriology, 182(12), 3593–3596.

    Article  CAS  Google Scholar 

  2. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49(1), 711–745.

    Article  CAS  Google Scholar 

  3. Chen, J., Lee, S. M., & Mao, Y. (2004). Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. International Journal of Food Microbiology, 93(3), 281–286.

    Article  CAS  Google Scholar 

  4. Ophir, T., & Gutnick, D. L. (1994). A role for exopolysaccharides in the protection of microorganisms from desiccation. Applied and Environmental Microbiology, 60(2), 740–745.

    Article  CAS  Google Scholar 

  5. Brown, M., & Gilbert, P. (1993). Sensitivity of biofilms to antimicrobial agents. Journal of Applied Microbiology, 74, 87S-97S.

    Google Scholar 

  6. Kim, M. S., Kim, Y. D., Hong, S. S., Park, K., Ko, K. S., & Myung, H. (2015). Phage-encoded colanic acid-degrading enzyme permits lytic phage infection of a capsule-forming resistant mutant Escherichia coli strain. Applied and Environmental Microbiology, 81(3), 900–909.

    Article  Google Scholar 

  7. Rskov, I., Rsikov, F., Jann, B., & Jann, K. (1977). Serology, chemistry, and genetic of O and K antigens of E. coli. Bacteriological Reviews, 41, 667–710.

    Article  Google Scholar 

  8. Mao, Y., Doyle, M. P., & Chen, J. (2001). Insertion mutagenesis of wca reduces acid and heat tolerance of enterohemorrhagic Escherichia coli O157:H7. Journal of Bacteriology, 183(12), 3811–3815.

    Article  CAS  Google Scholar 

  9. Grant, W. D., Sutherland, I. W., & Wilkinson, J. F. (1969). Exopolysaccharide colanic acid and its occurrence in the Enterobacteriaceae. Journal of Bacteriology, 100(3), 1187–1193.

    Article  CAS  Google Scholar 

  10. Markovitz, A. (1977). Genetics and regulation of bacterial capsular polysaccharide biosynthesis and radiation sensitivity (pp. 415–462). Academic Press, London.

    Google Scholar 

  11. Stevenson, G., Andrianopoulos, K., Hobbs, M., & Reeves, P. R. (1996). Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. Journal of Bacteriology, 178(16), 4885–4893.

    Article  CAS  Google Scholar 

  12. Rättö, M., Verhoef, R., Suihko, M.-L., Blanco, A., Schols, H. A., Voragen, A. G. J., Wilting, R., Siika-aho, M., & Buchert, J. (2006). Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. Journal of Industrial Microbiology and Biotechnology, 33(5), 359–367.

    Article  Google Scholar 

  13. Sutherland, I. W. (1969). Structural studies on colanic acid, the common exopolysaccharide found in the enterobacteriaceae, by partial acid hydrolysis. Oligosaccharides from colanic acid. Biochemical Journal, 115(5), 935–945.

    Article  CAS  Google Scholar 

  14. Han, B., Sivaramakrishnan, P., Lin, C.-C. J., Neve, I. A. A., He, J., Tay, L. W. R., Sowa, J. N., Sizovs, A., Du, G., Wang, J., Herman, C., & Wang W. C. (2017). Microbial genetic composition tunes host longevity. Cell, 169(7), 1249–1262.

    Article  CAS  Google Scholar 

  15. Liu, D., Cao, Y., Qu, R., Gao, G., Chen, S., Zhang, Y., Wu, M., Ma, T., & Li, G. (2019). Production of bacterial cellulose hydrogels with tailored crystallinity from Enterobacter sp. FY-07 by the controlled expression of colanic acid synthetic genes. Carbohydrate Polymers, 207, 563–570.

    Article  CAS  Google Scholar 

  16. Becker, D. J., & Lowe, J. B. (2003). Fucose: biosynthesis and biological function in mammals. Glycobiology, 13(7), 41R-53R.

    Article  CAS  Google Scholar 

  17. Lee, S.-H., Ko, C.-I., Jee, Y., Jeong, Y., Kim, M., Kim, J.-S., & Jeon, Y.-J. (2013). Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydrate Polymers, 92(1), 84–89.

    Article  CAS  Google Scholar 

  18. Fernando, I. P. S., Sanjeewa, K. K. A., Samarakoon, K. W., Kim, H.-S., Gunasekara, U. K. D. D. S., Park, Y.-J., Abeytunga, D. T. U., Lee, W. W., & Jeon, Y.-J. (2018). The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. Journal of Applied Phycology, 30(6), 3223–3232.

    Article  Google Scholar 

  19. Robert, C., Robert, A. M., & Robert, L. (2005). Effect of a preparation containing a fucose-rich polysaccharide on periorbital wrinkles of human voluntaries. Skin Research and Technology, 11(1), 47–52.

    Article  CAS  Google Scholar 

  20. Robert, L., Labat-Robert, J., & Robert, A.-M. (2009). Physiology of skin aging. Pathologie Biologie, 57(4), 336–341.

    Article  CAS  Google Scholar 

  21. Péterszegi, G., Isnard, N., Robert, A. M., & Robert, L. (2003). Studies on skin aging. Preparation and properties of fucose-rich oligo-and polysaccharides. Effect on fibroblast proliferation and survival. Biomedicine & Pharmacotherapy, 57(5–6), 187–194.

    Article  Google Scholar 

  22. Péterszegi, G., Fodil-Bourahla, I., Robert, A. M., & Robert, L. (2003). Pharmacological properties of fucose. Applications in age-related modifications of connective tissues. Biomedicine & Pharmacotherapy, 57(5–6), 240–245.

    Article  Google Scholar 

  23. Yu, S., Liu, J.-J., Yun, E. J., Kwak, S., Kim, K. H., & Jin, Y.-S. (2018). Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 17(1), 1–10.

    Article  CAS  Google Scholar 

  24. Majdalani, N., Heck, M., Stout, V., & Gottesman, S. (2005). Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. Journal of Bacteriology, 187(19), 6770–6778.

    Article  CAS  Google Scholar 

  25. Ren, G., Wang, Z., Li, Y., Hu, X., & Wang, X. (2016). Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. Journal of Bacteriology, 198(11), 1576–1584.

    Article  CAS  Google Scholar 

  26. Parker, C. T., Kloser, A. W., Schnaitman, C. A., Stein, M. A., Gottesman, S., & Gibson, B. W. (1992). Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. Journal of Bacteriology, 174(8), 2525–2538.

    Article  CAS  Google Scholar 

  27. Shiba, Y., Miyagawa, H., Nagahama, H., Matsumoto, K., Kondo, D., Matsuoka, S., Matsumoto, K., & Hara, H. (2012). Exploring the relationship between lipoprotein mislocalization and activation of the Rcs signal transduction system in Escherichia coli. Microbiology, 158(5), 1238–1248.

    Article  CAS  Google Scholar 

  28. Pontel, L. B., Pezza, A., & Soncini, F. C. (2010). Copper stress targets the Rcs system to induce multiaggregative behavior in a copper-sensitive Salmonella strain. Journal of Bacteriology, 192(23), 6287–6290.

    Article  CAS  Google Scholar 

  29. Castelli, M. E., & Véscovi, E. G. (2011). The Rcs signal transduction pathway is triggered by enterobacterial common antigen structure alterations in Serratia marcescens. Journal of Bacteriology, 193(1), 63–74.

    Article  CAS  Google Scholar 

  30. Majdalani, N., & Gottesman, S. (2005). The Rcs phosphorelay: A complex signal transduction system. Annual Review of Microbiology, 59, 379–405.

    Article  CAS  Google Scholar 

  31. Brill, J. A., Quinlan-Walshe, C., & Gottesman, S. (1988). Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. Journal of Bacteriology, 170(6), 2599–2611.

    Article  CAS  Google Scholar 

  32. Cho, S.-H., Szewczyk, J., Pesavento, C., Zietek, M., Banzhaf, M., Roszczenko, P., Asmar, A., Laloux, G., Hov, A.-K., Leverrier, P., Van der Henst, C., Vertommen, D., Typas, A., & Collet, J.-F. (2014). Detecting envelope stress by monitoring β-barrel assembly. Cell, 159(7), 1652–1664.

    Article  CAS  Google Scholar 

  33. Han, H. M., Kim, I. J., Yun, E. J., Lee, J. W., Cho, Y., Jin, Y.-S., & Kim, K. H. (2021). Overproduction of exopolysaccharide colanic acid by Escherichia coli by strain engineering and media optimization. Applied Biochemistry and Biotechnology, 193(1), 111–127.

    Article  CAS  Google Scholar 

  34. Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484–489.

    Article  CAS  Google Scholar 

  35. Navasa, N., Rodríguez-Aparicio, L., Martínez-Blanco, H., Arcos, M., & Ferrero, M. Á. (2009). Temperature has reciprocal effects on colanic acid and polysialic acid biosynthesis in E. coli K92. Applied Microbiology and Biotechnology, 82(4), 721–729.

    Article  CAS  Google Scholar 

  36. Li, J., Kisara, K., Danielsson, S., Lindström, M. E., & Gellerstedt, G. (2007). An improved methodology for the quantification of uronic acid units in xylans and other polysaccharide. Carbohydrate Research, 342(11), 1442–1449.

    Article  CAS  Google Scholar 

  37. Scott, R. W. (1979). Colorimetric determination of hexuronic acids in plant materials. Analytical Chemistry, 51(7), 936–941.

    Article  CAS  Google Scholar 

  38. Villa, F., Remelli, W., Forlani, F., Gambino, M., Landini, P., & Cappitelli, F. (2012). Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii. Biofouling, 28(8), 823–833.

    Article  CAS  Google Scholar 

  39. Wang, H., Wang, F., Wang, W., Yao, X., Wei, D., Cheng, H., & Deng, Z. (2014). Improving the expression of recombinant proteins in E. coli BL21(DE3) under acetate stress: An alkaline pH shift approach. PLoS One, 9(11)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the facility support by the Institute of Biomedical and Food Safety at CJ Food Safety Hall, Korea University.

Funding

This work was supported by the Mid-career Researcher Program through the National Research Foundation of Korea (2020R1A2B5B02002631) and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries, funded by the Ministry of Agriculture, Food, and Rural Affairs (321036051SB010).

Author information

Authors and Affiliations

Authors

Contributions

KHK and YSJ conceived the project. YC and EJY designed the experiments. YC, EJY, NRH, and IJK performed the microbial fermentation and product analysis. YC, EJY, and KHK wrote the manuscript. All authors read and approved the fnal manuscript.

Corresponding authors

Correspondence to Yong-Su Jin or Kyoung Heon Kim.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

K.H.K., E.J.Y., and Y.C. have filed a patent on a part of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Eun Ju Yun and Yoonho Cho contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, E.J., Cho, Y., Han, N.R. et al. Increased Production of Colanic Acid by an Engineered Escherichia coli Strain, Mediated by Genetic and Environmental Perturbations. Appl Biochem Biotechnol 193, 4083–4096 (2021). https://doi.org/10.1007/s12010-021-03671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03671-0

Keywords

Navigation