Skip to main content
Log in

Enhancing Extracellular Pullulanase Production in Bacillus subtilis Through dltB Disruption and Signal Peptide Optimization

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus subtilis has many attributes that make it a popular host for recombinant protein production. Although its protein production ability has been enhanced through protease gene disruption, residual proteases like quality control HtrA and HtrB can limit protein yield by degrading inadequately folded proteins present during overexpression. In this study, two strategies were employed to increase production of industrial enzyme pullulanase: enhancing extracellular pullulanase folding and optimizing its signal peptide. The hypothesis was that disruption of dltB gene of expression host B. subtilis WS9 would enhance recombinant extracellular folding by increasing cation binding to the cell’s outer envelope. Consistent with this hypothesis, disrupting dltB enhanced pullulanase production by 49% in shake-flask cultures. The disruption also enhanced extracellular α-CGTase and β-CGTase production by 25% and 35%, respectively. Then, more effective signal peptide for pullulanase production was identified through high-throughput screening of 173 unique B. subtilis signal peptides. Replacing the native signal peptide of pullulanase with that encoded by ywtF increased extracellular pullulanase activity by an additional 12%. Three-liter fermenter scale-up production yielded the highest extracellular pullulanase activity reported to date: 8037.91 U·mL−1. This study highlights the usefulness of dltB deletion and signal peptide optimization in enhancing extracellular protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta-Molecular Cell Research, 1694(1–3), 299–310.

    Article  CAS  Google Scholar 

  2. Schallmey, M., Singh, A., & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50(1), 1–17.

    Article  CAS  Google Scholar 

  3. Li, W., Zhou, X., & Lu, P. (2004). Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Research in Microbiology, 155(8), 605–610.

    Article  CAS  Google Scholar 

  4. Harwood, C. R., & Cranenburgh, R. (2008). Bacillus protein secretion: An unfolding story. Trends in Microbiology, 16(2), 73–79.

    Article  CAS  Google Scholar 

  5. Caspers, M., Brockmeier, U., Degering, C., Eggert, T., & Freudl, R. (2010). Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide. Applied Microbiology and Biotechnology, 86(6), 1877–1885.

    Article  CAS  Google Scholar 

  6. Westers, H., Westers, L., Darmon, E., van Dijl, J. M., Quax, W. J., & Zanen, G. (2006). The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS Journal, 273(16), 3816–3827.

    Article  CAS  Google Scholar 

  7. Sarvas, M., Harwood, C. R., Bron, S., & van Dijl, J. M. (2004). Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochimica et Biophysica Acta-Molecular Cell Research, 1694(1–3), 311–327.

    CAS  Google Scholar 

  8. Beveridge, T. J., & Murray, R. G. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141(2), 876–887.

    Article  CAS  Google Scholar 

  9. Perego, M., Glaser, P., Minutello, A., Strauch, M. A., Leopold, K., & Fischer, W. (1995). Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. Journal of Biological Chemistry, 270(26), 15598–15606.

    Article  CAS  Google Scholar 

  10. Hyyrylainen, H. L., Vitikainen, M., Thwaite, J., Wu, H., Sarvas, M., Harwood, C. R., Kontinen, V. P., & Stephenson, K. (2000). D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. Journal of Biological Chemistry, 275(35), 26696–26703.

    Article  CAS  Google Scholar 

  11. Vitikainen, M., Hyyrylainen, H. L., Kivimaki, A., Kontinen, V. P., & Sarvas, M. (2005). Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. Journal of Applied Microbiology, 99(2), 363–375.

    Article  CAS  Google Scholar 

  12. Thwaite, J. E., Baillie, L. W., Carter, N. M., Stephenson, K., Rees, M., Harwood, C. R., & Emmerson, P. T. (2002). Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis. Applied and Environmental Microbiology, 68(1), 227–234.

    Article  CAS  Google Scholar 

  13. Brockmeier, U., Caspers, M., Freudl, R., Jockwer, A., Noll, T., & Eggert, T. (2006). Systematic screening of all signal peptides from Bacillus subtilis: A powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. Journal of Molecular Biology, 362(3), 393–402.

    Article  CAS  Google Scholar 

  14. Degering, C., Eggert, T., Puls, M., Bongaerts, J., Evers, S., Maurer, K. H., & Jaeger, K. E. (2010). Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Applied Microbiology and Biotechnology, 76(19), 6370–6376.

    CAS  Google Scholar 

  15. Yao, D., Su, L., Li, N., & Wu, J. (2019). Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection. Microbial Cell Factories, 18, 69.

    Article  Google Scholar 

  16. Fu, G., Liu, J., Li, J., Zhu, B., & Zhang, D. (2018). Systematic screening of optimal signal peptides for secretory production of heterologous proteins in Bacillus subtilis. Journal of Agricultural and Food Chemistry, 66(50), 13141–13151.

    Article  CAS  Google Scholar 

  17. Zhang, K., Su, L., & Wu, J. (2018). Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Applied Microbiology and Biotechnology, 102(12), 5089–5103.

    Article  CAS  Google Scholar 

  18. Zhang, K., Su, L., Duan, X., Liu, L., & Wu, J. (2017). High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microbial Cell Factories, 16, 32.

    Article  Google Scholar 

  19. Anagnostopoulos, C., & Spizizen, J. (1961). Requirements for transformation in Bacillus subtilis. Journal of Bacteriology, 81(5), 741–746.

    Article  CAS  Google Scholar 

  20. Zhang, K., Duan, X., & Wu, J. (2016). Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Scientific Reports, 6, 27943.

    Article  CAS  Google Scholar 

  21. Dempsey, L. A., & Dubnau, D. A. (1989). Localization of the replication origin of plasmid pE194. Journal of Bacteriology, 171(5), 2866–2869.

    Article  CAS  Google Scholar 

  22. Bertoldo, C., Duffner, F., Jorgensen, P. L., & Antranikian, G. (1999). Pullulanase type I from Fervidobacterium pennavorans Ven5: Cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme. Applied and Environmental Microbiology, 65(5), 2084–2091.

    Article  CAS  Google Scholar 

  23. Lejeune, A., Sakaguchi, K., & Imanaka, T. (1989). A spectrophotometric assay for the cyclization activity of cyclomaltohexaose (α-cyclodextrin) glucanotransferase. Analytical Biochemistry, 181(1), 6–11.

    Article  CAS  Google Scholar 

  24. Konsoula, Z., & Liakopoulou-Kyriakides, M. (2007). Co-production of alpha-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology, 98(1), 150–157.

    Article  CAS  Google Scholar 

  25. Leloup, L., el Haddaoui, A., Chambert, R., & Petit-Glatron, M. F. (1997). Characterization of the rate-limiting step of the secretion of Bacillus subtilis α-amylase overproduced during the exponential phase of growth. Microbiology-SGM, 143(10), 3295–3303.

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from the National Key Research and Development Program of China (2019YFA0706900), the National Natural Science Foundation of China (31730067, 31901633), the 111 Project (No. 111–2-06), the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018–03), the Natural Science Foundation of Jiangsu Province (BK20180082), and the Jiangnan University Postdoctoral Science Foundation (5818088201191160).

Author information

Authors and Affiliations

Authors

Contributions

K Zhang and LQ Su designed the study. K Zhang performed the experiment. K Zhang, LQ Su, and J Wu analyzed the data. K Zhang wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Wu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Su, L. & Wu, J. Enhancing Extracellular Pullulanase Production in Bacillus subtilis Through dltB Disruption and Signal Peptide Optimization. Appl Biochem Biotechnol 194, 1206–1220 (2022). https://doi.org/10.1007/s12010-021-03617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03617-6

Keywords

Navigation