Skip to main content
Log in

Microbial Conversion of Lignin-Based Compounds into Carotenoids by Rhodococci

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignin valorization is considered an integral part for an economically viable biorefinery. However, heterogenous nature of lignin imposes a big challenge for upgrading diverse lignin-derived intermediates and subsequent downstream processing. To overcome this challenge, we proposed to explore unique convergent pathways in Rhodococus strains to funnel lignin-derived compounds into single target products. A feasible bioprocess for co-production of lipids and carotenoids from lignin by Rhodococci was developed. This process would potentially extract more values from lignin via biological upgrading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All authors declare that all data and materials support their published claims and comply with field standards.

References

  1. Balan, V., Chiaramonti, D., & Kumar, S. (2013). Biofuels Bioprod. Biorefin., 7(6), 732–759.

    Article  CAS  Google Scholar 

  2. Chen, Z., & Wan, C. (2017). Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 73, 610–621.

    Article  CAS  Google Scholar 

  3. Xu, Z., Lei, P., Zhai, R., Wen, Z., & Jin, M. (2019). Biotechnol. Biofuels, 12(1), 32.

    Article  CAS  Google Scholar 

  4. Martínková, L., Uhnáková, B., Pátek, M., Nešvera, J., & Křen, V. (2009). Biodegradation potential of the genus Rhodococcus. Environment International, 35(1), 162–177.

    Article  PubMed Central  Google Scholar 

  5. Chen, Z., & Wan, C. (2017). Co-fermentation of lignocellulose-based glucose and inhibitory compounds for lipid synthesis by Rhodococcus jostii RHA1. Process Biochemistry, 57, 159–166.

    Article  CAS  Google Scholar 

  6. Wei, Z., Zeng, G., Huang, F., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 17(5), 2784–2789.

    Article  CAS  Google Scholar 

  7. Cai, C., Xu, Z., Xu, M., Cai, M., & Jin, M. (2020). ACS Sustain. Chemical Engineer, 8, 2016–2031.

    CAS  Google Scholar 

  8. Ichiyama, S., Shimokata, K., & Tsukamura, M. (1989). Carotenoid Pigments of GenusRhodococcus. Microbiology and Immunology, 33(6), 503–508.

    Article  CAS  PubMed Central  Google Scholar 

  9. Fiedor, J., & Burda, K. (2014). Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients, 6(2), 466–488.

    Article  PubMed Central  Google Scholar 

  10. Mata-Gómez, L. C., Montañez, J. C., Méndez-Zavala, A. and Aguilar, C. N. (2014) Microb. Cell Fact. 13, 12, 1.

  11. Chaudhary, R., & Dhepe, P. L. (2017). Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chemistry, 19(3), 778–788.

    Article  CAS  Google Scholar 

  12. Chen, Z., Reznicek, W. D., & Wan, C. (2018). Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresource Technology, 263, 40–48.

    Article  CAS  PubMed Central  Google Scholar 

  13. Amara, S., Seghezzi, N., Otani, H., Diaz-Salazar, C., Liu, J. and Eltis, L. D. (2016) Sci. Rep. 6.

  14. Vardon, D. R., Rorrer, N. A., Salvachua, D., Settle, A. E., Johnson, C. W., Menart, M. J., Cleveland, N. S., Ciesielski, P. N., Steirer, K. X., Dorgan, J. R., & Beckham, G. T. (2016). cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chemistry, 18(11), 3397–3413.

    Article  CAS  Google Scholar 

  15. Salvachúa, D., Karp, E. M., Nimlos, C. T., Vardon, D. R., & Beckham, G. T. (2015). Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chemistry, 17(11), 4951–4967.

    Article  Google Scholar 

  16. Takaichi, S., Ishidsu, J.-I., Seki, T. and Fukada, S. (1990) Agric. Biol. Chem. 54, 1931-1937.

  17. Ahn, J.-W., & Kim, K.-J. (2015). Enzyme Microb. Technol., 77, 29–37.

    CAS  Google Scholar 

  18. Chan, J. M., Bauer, S., Sorek, H., Sreekumar, S., Wang, K., & Toste, F. D. (2013). Studies on the Vanadium-Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. ACS Catalysis, 3(6), 1369–1377.

    Article  CAS  Google Scholar 

  19. Erdocia, X., Prado, R., Fernández-Rodríguez, J., & Labidi, J. (2015). ACS Sustain. Chemical Engineer, 4, 1373–1380.

    Google Scholar 

  20. Kosa, M., & Ragauskas, A. J. (2012). Bioconversion of lignin model compounds with oleaginous Rhodococci. Applied Microbiology and Biotechnology, 93(2), 891–900.

    Article  CAS  PubMed Central  Google Scholar 

  21. Zhao, C., Xie, S., Pu, Y., Zhang, R., Huang, F., Ragauskas, A. J., & Yuan, J. S. (2016). Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 18(5), 1306–1312.

    Article  CAS  Google Scholar 

  22. Xie, S., Sun, Q., Pu, Y., Lin, F., Sun, S., Wang, X., Ragauskas, A. J., & Yuan, J. S. (2017). ACS Sustain. Chemical Engineer, 5, 2215–2223.

    CAS  Google Scholar 

  23. Kot, A. M., Błażejak, S., Kieliszek, M., Gientka, I., Bryś, J., Reczek, L. and Pobiega, K. (2019) World J. Microbiol. Biotechnol. 35, 157, 10.

  24. Olson, M. L., Johnson, J., Carswell, W. F., Reyes, L. H., Senger, R. S., & Kao, K. C. (2016). Characterization of an evolved carotenoids hyper-producer ofSaccharomyces cerevisiaethrough bioreactor parameter optimization and Raman spectroscopy. Journal of Industrial Microbiology & Biotechnology, 43(10), 1355–1363.

    Article  CAS  Google Scholar 

  25. Gao, S., Tong, Y., Zhu, L., Ge, M., Zhang, Y., Chen, D., Jiang, Y., & Yang, S. (2017). Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 41, 192–201.

    Article  CAS  PubMed Central  Google Scholar 

  26. Yamane, Y., Higashida, K., Nakashimada, Y., Kakizono, T., & Nishio, N. (1997). Influence of Oxygen and Glucose on Primary Metabolism and Astaxanthin Production by Phaffia rhodozyma in Batch and Fed-Batch Cultures: Kinetic and Stoichiometric Analysis. Applied and Environmental Microbiology, 63(11), 4471–4478.

    Article  CAS  PubMed Central  Google Scholar 

  27. Chávez-Cabrera, C., Flores-Bustamante, Z. R., Marsch, R., Montes, M. D. C., Sánchez, S., Cancino-Díaz, J. C. and Flores-Cotera, L. B. (2010) Appl. Microbiol. Biotechnol. 85, 1953-1960, 6.

  28. Yang, L.-B., Zhan, X.-B., Zheng, Z.-Y., Wu, J.-R., Gao, M.-J., & Lin, C.-C. (2014). A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresource Technology, 151, 120–127.

    Article  CAS  PubMed Central  Google Scholar 

  29. Baral, N. R., & Shah, A. (2014). Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 98(22), 9151–9172.

    Article  CAS  PubMed Central  Google Scholar 

  30. Dias, C., Sousa, S., Caldeira, J., Reis, A., & Lopes da Silva, T. (2015). Bioresour. Technol., 189, 309–318.

    CAS  Google Scholar 

  31. Honda, H., Sugiyama, H., Saito, I., & Kobayashi, T. (1998). High cell density culture of Rhodococcus rhodochrous by pH-stat feeding and dibenzothiophene degradation. Journal of Fermentation and Bioengineering, 85(3), 334–338.

    Article  CAS  Google Scholar 

  32. Shields-Menard, S. A., AmirSadeghi, M., Green, M., Womack, E., Sparks, D. L., Blake, J., Edelmann, M., Ding, X., Sukhbaatar, B., Hernandez, R., Donaldson, J. R., & French, T. (2017). The effects of model aromatic lignin compounds on growth and lipid accumulation of Rhodococcus rhodochrous. International Biodeterioration & Biodegradation, 121, 79–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the ideation and writing of this work.

Corresponding author

Correspondence to Caixia Wan.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

The authors agreed to participate in this work.

Consent for Publication

The authors agreed to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wan, C. Microbial Conversion of Lignin-Based Compounds into Carotenoids by Rhodococci. Appl Biochem Biotechnol 193, 3442–3453 (2021). https://doi.org/10.1007/s12010-021-03602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03602-z

Keywords

Navigation