Skip to main content
Log in

Rapid Genome Modification in Serratia marcescens Through Red Homologous Recombination

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Despite the great potential of Serratia marcescens in industrial applications, lack of powerful genetic modification tools limits understanding of the regulatory networks of the useful metabolites and therefore restricts their mass production. To meet the urgent demand, we established a genome-editing strategy for S. marcescens based on Red recombineering in this study. Without host modification in advance, nucA and pigA were substituted by PCR-amplified resistance genes. No long homologous arms were required at the two sides of resistance genes. Using this procedure, the fragment at the S. marcescens as large as 20 kb was easily deleted. Then we constructed a counter-selection gene kil constructed under the control of inducible PBAD operon, which demonstrates obvious lethality to S. marcescens. Subsequently, GmR-kil double selection cassette was inserted into the CDS of pigA gene. Using single-stranded DNA–mediated recombination, this insertion mutation was efficiently repaired through kil counter-selection. A powerful genetic modification platform based on Red recombineering system was successfully established for S. marcescens. Multiple types of modification and multiple recombination strategies can all be performed easily in this species. We hope this study will be useful for the theoretical research and the research of metabolic engineering in S. marcescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Abreo, E., & Altier, N. (2019). Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Scientific Reports, 9(46), 1–8.

    CAS  Google Scholar 

  2. Yip, C. H., Yarkoni, O., Ajioka, J., Wan, K. L., & Nathan, S. (2019). Recent advancements in high-level synthesis of the promising clinical drug, prodigiosin. Applied Microbiology and Biotechnology, 103(4), 1667–1680.

    Article  CAS  Google Scholar 

  3. Pan, X., Sun, C., Tang, M., You, J., Osire, T., Zhao, Y., Xu, M., Zhang, X., Shao, M., Yang, S., Yang, T., & Rao, Z. (2020). LysR-Type transcriptional regulator metr controls prodigiosin production, methionine biosynthesis, cell motility, h2o2 tolerance, heat tolerance, and exopolysaccharide synthesis in Serratia marcescens. Applied and Environmental Microbiology, 86(4), 1–18.

    Article  Google Scholar 

  4. Emruzi, Z., Aminzadeh, S., Karkhane, A. A., Alikhajeh, J., Haghbeen, K., & Gholami, D. (2018). Improving the thermostability of Serratia marcescens B4A chitinase via G191V site-directed mutagenesis. International Journal of Biological Macromolecules, 116(2018), 64–70.

    Article  CAS  Google Scholar 

  5. Visootsat, A., Nakamura, A., Vignon, P., Watanabe, H., Uchihashi, T., & Iino, R. (2020). Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase A from Serratia marcescens. Journal of Biological Chemistry, 295(7), 1915–1925.

    Article  CAS  Google Scholar 

  6. Gerc, A. J., Song, L., Challis, G. L., Stanley-Wall, N. R., & Coulthurst, S. J. (2012). The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin. PLoS One, 7(9), 1–13.

    Article  Google Scholar 

  7. Velez-Gomez, J. M., Melchor-Moncada, J. J., Veloza, L. A., & Sepulveda-Arias, J. C. (2019). Purification and characterization of a metalloprotease produced by the C8 isolate of Serratia marcescens using silkworm pupae or casein as a protein source. International Journal of Biological Macromolecules, 135(2019), 97–105.

    Article  CAS  Google Scholar 

  8. Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., & Dufosse, L. (2019). Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms, 7(7), 1–46.

    Article  Google Scholar 

  9. Darshan, N., & Manonmani, H. K. (2015). Prodigiosin and its potential applications. Journal of Food Science and Technology, 52(9), 5393–5407.

    Article  CAS  Google Scholar 

  10. Montaner, B., Navarro, S., Pique, M., Vilaseca, M., Martinell, M., Giralt, E., Gil, J., & Perez-Tomas, R. (2000). Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. British Journal of Pharmacology, 131(3), 585–593.

    Article  CAS  Google Scholar 

  11. Han, S. B., Kim, H. M., Kim, Y. H., Lee, C. W., Jang, E. S., Son, K. H., Kim, S. U., & Kim, Y. K. (1998). T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens. International Journal of Immunopharmacology, 20(1-3), 1–13.

    Article  CAS  Google Scholar 

  12. Lapenda, J. C., Silva, P. A., Vicalvi, M. C., Sena, K. X., & Nascimento, S. C. (2015). Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World Journal of Microbiology and Biotechnology, 31(2), 399–406.

    Article  CAS  Google Scholar 

  13. Bennett, J. W., & Bentley, R. (2000). Seeing red: the story of prodigiosin. Advances in Applied Microbiology, 47(2000), 1–32.

    CAS  PubMed  Google Scholar 

  14. Herrero, M., de Lorenzo, V., & Timmis, K. N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. Journal of Bacteriology, 172(11), 6557–6567.

    Article  CAS  Google Scholar 

  15. Shanks, R. M., Stella, N. A., Kalivoda, E. J., Doe, M. R., O’Dee, D. M., Lathrop, K. L., Guo, F. L., & Nau, G. J. (2007). A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation. Journal of Bacteriology, 189(20), 7262–7272.

    Article  CAS  Google Scholar 

  16. Williamson, N. R., Simonsen, H. T., Ahmed, R. A., Goldet, G., Slater, H., Woodley, L., Leeper, F. J., & Salmond, G. P. (2005). Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Molecular Microbiology, 56(4), 971–989.

    Article  CAS  Google Scholar 

  17. Xu, P., Rizzoni, E. A., Sul, S. Y., & Stephanopoulos, G. (2017). Improving metabolic pathway efficiency by statistical model-based multivariate regulatory metabolic engineering. ACS Synthetic Biology, 6(1), 148–158.

    Article  CAS  Google Scholar 

  18. Erb, T. J., Jones, P. R., & Bar-Even, A. (2017). Synthetic metabolism: metabolic engineering meets enzyme design. Current Opinion in Chemical Biology, 37(2017), 56–62.

    Article  CAS  Google Scholar 

  19. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G., & Court, D. L. (2009). Recombineering: A homologous recombination-based method of genetic engineering. Nature Protocols, 4(2), 206–223.

    Article  CAS  Google Scholar 

  20. Yu, D., Ellis, H. M., Lee, E.-C., Jenkins, N. A., & Copeland, N. G. (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences, 97(11), 5978–5983.

    Article  CAS  Google Scholar 

  21. Ellis, H. M., Yu, D., & DiTizio, T. (2001). High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proceedings of the National Academy of Sciences, 98(12), 6742–6746.

    Article  CAS  Google Scholar 

  22. Lee, E.-C., Yu, D., De Velasco, J. M., Tessarollo, L., Swing, D. A., Court, D. L., Jenkins, N. A., & Copeland, N. G. (2001). A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 73(1), 56–65.

    Article  CAS  Google Scholar 

  23. Karlinsey, J. E. (2007). lambda-Red genetic engineering in Salmonella enterica serovar Typhimurium. Methods in Enzymology, 421(2007), 199–209.

    Article  CAS  Google Scholar 

  24. Cox, M. M., Layton, S. L., Jiang, T., Cole, K., Hargis, B. M., Berghman, L. R., Bottje, W. G., & Kwon, Y. M. (2007). Scarless and site-directed mutagenesis in Salmonella enteritidis chromosome. BMC Biotechnology, 7(2007), 1–10.

    Google Scholar 

  25. Grin, I., Hartmann, M. D., Sauer, G., Hernandez Alvarez, B., Schutz, M., Wagner, S., Madlung, J., Macek, B., Felipe-Lopez, A., Hensel, M., Lupas, A., & Linke, D. (2014). A trimeric lipoprotein assists in trimeric autotransporter biogenesis in enterobacteria. Journal of Biological Chemistry, 289(11), 7388–7398.

    Article  CAS  Google Scholar 

  26. Rossi, M. S., Paquelin, A., Ghigo, J. M., & Wandersman, C. (2003). Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Molecular Microbiology, 48(6), 1467–1480.

    Article  CAS  Google Scholar 

  27. Kamaletdinova, L. K., Nizamutdinova, E. K., Shirshikova, T. V., Skipina, I. M., & Bogomolnaya, L. M. (2016). Inactivation of chromosomal genes in Serratia marcescens. Journal of Bionanoscience, 6(4), 376–378.

    Article  Google Scholar 

  28. Chen, W., Li, Y., Wu, G., Zhao, L., Lu, L., Wang, P., Zhou, J., Cao, C., & Li, S. (2019). Simple and efficient genome recombineering using kil counter-selection in Escherichia coli. Journal of Biotechnology, 294(2019), 58–66.

    Article  CAS  Google Scholar 

  29. Haeusser, D. P., Hoashi, M., Weaver, A., Brown, N., Pan, J., Sawitzke, J. A., Thomason, L. C., & Margolin, W. (2014). The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genetics, 10(3), 1–25.

    Article  Google Scholar 

  30. Hornsey, M., Ellington, M. J., Doumith, M., Hudson, S., Livermore, D. M., & Woodford, N. (2010). Tigecycline resistance in Serratia marcescens associated with up-regulation of the SdeXY-HasF efflux system also active against ciprofloxacin and cefpirome. Journal of Antimicrobial Chemotherapy, 65(3), 479–482.

    Article  CAS  Google Scholar 

  31. Fuste, E., Galisteo, G. J., Jover, L., Vinuesa, T., Villa, T. G., & Vinas, M. (2012). Comparison of antibiotic susceptibility of old and current Serratia. Future Microbiology, 7(6), 781–786.

    Article  CAS  Google Scholar 

  32. Shokouhfard, M., Kermanshahi, R. K., Shahandashti, R. V., Feizabadi, M. M., & Teimourian, S. (2015). The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens. Iranian Journal of Basic Medical Sciences, 18(10), 1001–1007.

    PubMed  PubMed Central  Google Scholar 

  33. Guzman, L. M., Belin, D., Carson, M. J., & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of Bacteriology, 177(14), 4121–4130.

    Article  CAS  Google Scholar 

  34. Huang, Y. W., Hu, R. M., Chiang, Y. T., Chung, T. C., Chung, T. C., & Yang, T. C. (2011). Establishment of an arabinose-inducible system in Stenotrophomonas maltophilia. Folia Microbiologica, 56(1), 18–22.

    Article  CAS  Google Scholar 

  35. Okrent, R. A., Trippe, K. M., Maselko, M., & Manning, V. (2017). Functional analysis of a biosynthetic cluster essential for production of 4-formylaminooxyvinylglycine, a germination-arrest factor from Pseudomonas fluorescens WH6. Microbiology (Reading), 163(2), 207–217.

    Article  CAS  Google Scholar 

  36. Hu, D. X., Withall, D. M., Challis, G. L., & Thomson, R. J. (2016). Structure, chemical synthesis, and biosynthesis of prodiginine natural products. Chemical Reviews, 116(14), 7818–7853.

    Article  CAS  Google Scholar 

  37. Soo, P. C., Horng, Y. T., Chang, Y. L., Tsai, W. W., Jeng, W. Y., Lu, C. C., & Lai, H. C. (2014). ManA is regulated by RssAB signaling and promotes motility in Serratia marcescens. Research in Microbiology, 165(1), 21–29.

    Article  CAS  Google Scholar 

  38. Romanowski, E. G., Lehner, C. M., Martin, N. C., Patel, K. R., Callaghan, J. D., Stella, N. A., & Shanks, R. M. Q. (2019). Thermoregulation of prodigiosin biosynthesis by Serratia marcescens is controlled at the transcriptional level and requires HexS. Polish Journal of Microbiology, 68(1), 43–50.

    Article  Google Scholar 

  39. Haddix, P. L., & Shanks, R. M. Q. (2020). Production of prodigiosin pigment by Serratia marcescens is negatively associated with cellular ATP levels during high-rate, low-cell-density growth. Canadian Journal of Microbiology, 66(3), 243–255.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to Professor Donald L. Court for the plasmid (pKD46 and pSim6) and Sheng Yang for the strain MG1655.

Funding

This study was supported by the Science and Technology Program of Guangdong Province (grant number 2015A010107014) and Grant-in-Aid from the Natural Scientific Foundation of China (grant number 31501895).

Author information

Authors and Affiliations

Authors

Contributions

W Chen and RY Chen performed the research; W Chen designed the experiments and wrote the manuscript. JY Cao supervised the research and helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianyun Cao.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and approved this version of the article and consented for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• PCR-amplified products with short homology were used for recombination.

• A usable counter-selection system based on kil gene was constructed.

• Insertion mutation can be repaired efficiently with ssDNA-meditated recombination.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Chen, R. & Cao, J. Rapid Genome Modification in Serratia marcescens Through Red Homologous Recombination. Appl Biochem Biotechnol 193, 2916–2931 (2021). https://doi.org/10.1007/s12010-021-03576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03576-y

Keywords

Navigation