Skip to main content
Log in

Optimisation of Cytochrome P450 BM3 Assisted by Consensus-Guided Evolution

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cytochrome P450 enzymes have attracted much interest over the years given their ability to insert oxygen into saturated carbon-hydrogen bonds, a difficult feat to accomplish by traditional chemistry. Much of the activity in this field has centered on the bacterial enzyme CYP102A1, or BM3, from Bacillus megaterium, as it has shown itself capable of hydroxylating/acting upon a wide range of substrates, thereby producing industrially relevant pharmaceuticals, fine chemicals, and hormones. In addition, unlike most cytochromes, BM3 is both soluble and fused to its natural redox partner, thus facilitating its use. The industrial use of BM3 is however stifled by its instability and its requirement for the expensive NADPH cofactor. In this work, we added several mutations to the BM3 mutant R966D/W1046S that enhanced the turnover number achievable with the inexpensive cofactors NADH and NBAH. These new mutations, A769S, S847G, S850R, E852P, and V978L, are localized on the reductase domain of BM3 thus leaving the oxidase domain intact. For NBAH-driven reactions by new mutant NTD5, this led to a 5.24-fold increase in total product output when compared to the BM3 mutant R966D/W1046S. For reactions driven by NADH by new mutant NTD6, this enhanced total product output by as much as 2.3-fold when compared to the BM3 mutant R966D/W1046S. We also demonstrated that reactions driven by NADH with the NTD6 mutant not only surpassed total product output achievable by wild-type BM3 with NADPH but also retained the ability to use this latter cofactor with greater total product output as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

(N/A)

References

  1. Ortiz de Montellano, P. R. (2010). Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chemical Reviews, 110(2), 932–948. https://doi.org/10.1021/cr9002193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bernhardt, R., & Waterman, M. R. (2007). Cytochrome P450 and Steroid Hormone Biosynthesis. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), The Ubiquitous Roles of Cytochrome P450 Proteins (pp. 361–396). John Wiley & Sons, Ltd. Retrieved from. https://doi.org/10.1002/9780470028155.ch12/summary.

  3. Edin, M. L., Cheng, J., Gruzdev, A., Hoopes, S. L., & Zeldin, D. C. (2015). P450 Enzymes in Lipid Oxidation. In Cytochrome P450 (pp. 881–905). Springer, Cham. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-12108-6_13

  4. Jamieson, K. L., Endo, T., Darwesh, A. M., Samokhvalov, V., & Seubert, J. M. (2017). Cytochrome P450-derived eicosanoids and heart function. Pharmacology & Therapeutics, 179, 47–83. https://doi.org/10.1016/j.pharmthera.2017.05.005.

    Article  CAS  Google Scholar 

  5. Andersen, J. F., & Hutchinson, C. R. (1992). Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. Journal of Bacteriology, 174(3), 725–735.

    Article  CAS  Google Scholar 

  6. Shen, B., & Hutchinson, C. R. (1994). Triple hydroxylation of tetracenomycin A2 to tetracenomycin C in Streptomyces glaucescens. Overexpression of the tcmG gene in Streptomyces lividans and characterization of the tetracenomycin A2 oxygenase. The Journal of Biological Chemistry, 269(48), 30726–30733.

    Article  CAS  Google Scholar 

  7. Anzai, Y., Li, S., Chaulagain, M. R., Kinoshita, K., Kato, F., Montgomery, J., & Sherman, D. H. (2008). Functional Analysis of MycCI and MycG, Cytochrome P450 Enzymes Involved in Biosynthesis of Mycinamicin Macrolide Antibiotics. Chemistry & Biology, 15(9), 950–959. https://doi.org/10.1016/j.chembiol.2008.07.014.

    Article  CAS  Google Scholar 

  8. Tian, L., Musetti, V., Kim, J., Magallanes-Lundback, M., & DellaPenna, D. (2004). The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 402–407. https://doi.org/10.1073/pnas.2237237100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thatcher, J. E., & Isoherranen, N. (2009). The role of CYP26 enzymes in retinoic acid clearance. Expert Opinion on Drug Metabolism & Toxicology, 5(8), 875–886. https://doi.org/10.1517/17425250903032681.

    Article  CAS  Google Scholar 

  10. Jones, G., Prosser, D. E., & Kaufmann, M. (2014). Cytochrome P450-mediated metabolism of vitamin D. Journal of Lipid Research, 55(1), 13–31. https://doi.org/10.1194/jlr.R031534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Keefe, D. P., Romesser, J. A., & Leto, K. J. (1988). Identification of constitutive and herbicide inducible cytochromes P-450 in Streptomyces griseolus. Archives of Microbiology, 149(5), 406–412. https://doi.org/10.1007/BF00425579.

    Article  Google Scholar 

  12. Siminszky, B. (2006). Plant cytochrome P450-mediated herbicide metabolism. Phytochemistry Reviews, 5(2-3), 445–458. https://doi.org/10.1007/s11101-006-9011-7.

    Article  CAS  Google Scholar 

  13. Li, Q., Fang, Y., Li, X., Zhang, H., Liu, M., Yang, H., Kang, Z., Li, Y., & Wang, Y. (2013). Mechanism of the plant cytochrome P450 for herbicide resistance: a modelling study. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(6), 1182–1191. https://doi.org/10.3109/14756366.2012.719505.

    Article  CAS  PubMed  Google Scholar 

  14. Chiu, T.-L., Wen, Z., Rupasinghe, S. G., & Schuler, M. A. (2008). Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proceedings of the National Academy of Sciences of the United States of America, 105(26), 8855–8860. https://doi.org/10.1073/pnas.0709249105.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaplanoglu, E., Chapman, P., Scott, I. M., & Donly, C. (2017). Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Scientific Reports, 7(1), 1762. https://doi.org/10.1038/s41598-017-01961-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewis, D. F., Dickins, M., Eddershaw, P. J., Tarbit, M. H., & Goldfarb, P. S. (1999). Cytochrome P450 substrate specificities, substrate structural templates and enzyme active site geometries. Drug Metabolism and Drug Interactions, 15(1), 1–49.

    Article  CAS  Google Scholar 

  17. Lewis, D. F. (2000). Structural characteristics of human P450s involved in drug metabolism: QSARs and lipophilicity profiles. Toxicology, 144(1-3), 197–203.

    Article  CAS  Google Scholar 

  18. Carver, P. L. (2007). Cytochrome P450 Enzymes: Observations from the Clinic. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), The Ubiquitous Roles of Cytochrome P450 Proteins (pp. 591–617). John Wiley & Sons, Ltd. Retrieved from. https://doi.org/10.1002/9780470028155.ch17/summary.

  19. Guengerich, F. P. (2008). Cytochrome p450 and chemical toxicology. Chemical Research in Toxicology, 21(1), 70–83. https://doi.org/10.1021/tx700079z.

    Article  CAS  PubMed  Google Scholar 

  20. Shoji, O., Fujishiro, T., Nakajima, H., Kim, M., Nagano, S., Shiro, Y., & Watanabe, Y. (2007). Hydrogen Peroxide Dependent Monooxygenations by Tricking the Substrate Recognition of Cytochrome P450BSβ. Angewandte Chemie International Edition, 46(20), 3656–3659. https://doi.org/10.1002/anie.200700068.

    Article  CAS  PubMed  Google Scholar 

  21. Kawakami, N., Shoji, O., & Watanabe, Y. (2011). Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes. Angewandte Chemie (International Ed. in English), 50(23), 5315–5318. https://doi.org/10.1002/anie.201007975.

    Article  CAS  Google Scholar 

  22. Li, Q. S., Schwaneberg, U., Fischer, P., & Schmid, R. D. (2000). Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chemistry (Weinheim an Der Bergstrasse, Germany), 6(9), 1531–1536.

    CAS  Google Scholar 

  23. Carmichael, A. B., & Wong, L. L. (2001). Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. European Journal of Biochemistry, 268(10), 3117–3125.

    Article  CAS  Google Scholar 

  24. Glieder, A., Farinas, E. T., & Arnold, F. H. (2002). Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nature Biotechnology, 20(11), 1135–1139. https://doi.org/10.1038/nbt744.

    Article  CAS  PubMed  Google Scholar 

  25. Lussenburg, B. M. A., Babel, L. C., Vermeulen, N. P. E., & Commandeur, J. N. M. (2005). Evaluation of alkoxyresorufins as fluorescent substrates for cytochrome P450 BM3 and site-directed mutants. Analytical Biochemistry, 341(1), 148–155. https://doi.org/10.1016/j.ab.2005.02.025.

    Article  CAS  PubMed  Google Scholar 

  26. van Vugt-Lussenburg, B. M. A., Damsten, M. C., Maasdijk, D. M., Vermeulen, N. P. E., & Commandeur, J. N. M. (2006). Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochemical and Biophysical Research Communications, 346(3), 810–818. https://doi.org/10.1016/j.bbrc.2006.05.179.

    Article  CAS  PubMed  Google Scholar 

  27. Sideri, A., Goyal, A., Di Nardo, G., Tsotsou, G. E., & Gilardi, G. (2013). Hydroxylation of non-substituted polycyclic aromatic hydrocarbons by cytochrome P450 BM3 engineered by directed evolution. Journal of Inorganic Biochemistry, 120, 1–7. https://doi.org/10.1016/j.jinorgbio.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  28. Di Nardo, G., Dell’Angelo, V., Catucci, G., Sadeghi, S. J., & Gilardi, G. (2016). Subtle structural changes in the Asp251Gly/Gln307His P450 BM3 mutant responsible for new activity toward diclofenac, tolbutamide and ibuprofen. Archives of Biochemistry and Biophysics, 602, 106–115. https://doi.org/10.1016/j.abb.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  29. Munday, S. D., Shoji, O., Watanabe, Y., Wong, L.-L., & Bell, S. G. (2016). Improved oxidation of aromatic and aliphatic hydrocarbons using rate enhancing variants of P450Bm3 in combination with decoy molecules. Chemical Communications, 52(5), 1036–1039. https://doi.org/10.1039/C5CC09247G.

    Article  CAS  PubMed  Google Scholar 

  30. Munro, A. W., Leys, D. G., McLean, K. J., Marshall, K. R., Ost, T. W. B., Daff, S., Miles, C. S., Chapman, S. K., Lysek, D. A., Moser, C. C., Page, C. C., & Dutton, P. L. (2002). P450 BM3: the very model of a modern flavocytochrome. Trends in Biochemical Sciences, 27(5), 250–257.

    Article  CAS  Google Scholar 

  31. Noble, M. A., Miles, C. S., Chapman, S. K., Lysek, D. A., MacKay, A. C., Reid, G. A., et al. (1999). Roles of key active-site residues in flavocytochrome P450 BM3. Biochemical Journal, 339(Pt 2), 371–379.

    Article  CAS  Google Scholar 

  32. Makris, T. M., Denisov, I., Schlichting, I., & Sligar, S. G. (2005). Activation of Molecular Oxygen by Cytochrome P450. In Cytochrome P450 (pp. 149–182). Springer, Boston, MA. Retrieved from https://link.springer.com/chapter/10.1007/0-387-27447-2_5

  33. Loida, P. J., & Sligar, S. G. (1993). Molecular recognition in cytochrome P-450: Mechanism for the control of uncoupling reactions. Biochemistry, 32(43), 11530–11538. https://doi.org/10.1021/bi00094a009.

    Article  CAS  PubMed  Google Scholar 

  34. Lim, J. B., Barker, K. A., Eller, K. A., Jiang, L., Molina, V., Saifee, J. F., & Sikes, H. D. (2015). Insights into electron leakage in the reaction cycle of cytochrome P450 BM3 revealed by kinetic modeling and mutagenesis. Protein Science: A Publication of the Protein Society, 24(11), 1874–1883. https://doi.org/10.1002/pro.2793.

    Article  CAS  Google Scholar 

  35. Davies, M. J. (2012). Oxidative Damage to Proteins. In Encyclopedia of Radicals in Chemistry, Biology and Materials. John Wiley & Sons, Ltd. Retrieved from https://doi.org/10.1002/9781119953678.rad045/abstract

  36. Jung, C., Schünemann, V., Lendzian, F., Trautwein, A. X., Contzen, J., Galander, M., Böttger, L. H., Richter, M., & Barra, A.-L. (2005). Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450. Biological Chemistry, 386(10), 1043–1053. https://doi.org/10.1515/BC.2005.120.

    Article  CAS  PubMed  Google Scholar 

  37. Jung, C. (2007). Leakage in Cytochrome P450 Reactions in Relation to Protein Structural Properties. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), The Ubiquitous Roles of Cytochrome P450 Proteins (pp. 187–234). John Wiley & Sons, Ltd. Retrieved from. https://doi.org/10.1002/9780470028155.ch7/summary.

  38. Maurer, S. C., Kühnel, K., Kaysser, L. A., Eiben, S., Schmid, R. D., & Urlacher, V. B. (2005). Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants. Advanced Synthesis & Catalysis, 347(7-8), 1090–1098. https://doi.org/10.1002/adsc.200505044.

    Article  CAS  Google Scholar 

  39. Ryan, J. D., Fish, R. H., & Clark, D. S. (2008). Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. Chembiochem: A European Journal of Chemical Biology, 9(16), 2579–2582. https://doi.org/10.1002/cbic.200800246.

    Article  CAS  PubMed  Google Scholar 

  40. van Beilen, J. B., Duetz, W. A., Schmid, A., & Witholt, B. (2003). Practical issues in the application of oxygenases. Trends in Biotechnology, 21(4), 170–177. https://doi.org/10.1016/S0167-7799(03)00032-5.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar, S. (2010). Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opinion on Drug Metabolism & Toxicology, 6(2), 115–131. https://doi.org/10.1517/17425250903431040.

    Article  CAS  Google Scholar 

  42. O’Reilly, E., Köhler, V., Flitsch, S. L., & Turner, N. J. (2011). Cytochromes P450 as useful biocatalysts: addressing the limitations. Chemical Communications (Cambridge, England), 47(9), 2490–2501. https://doi.org/10.1039/c0cc03165h.

    Article  CAS  Google Scholar 

  43. Jung, S. T., Lauchli, R., & Arnold, F. H. (2011). Cytochrome P450: taming a wild type enzyme. Current Opinion in Biotechnology, 22(6), 809–817. https://doi.org/10.1016/j.copbio.2011.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi, J.-M., Han, S.-S., & Kim, H.-S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33(7), 1443–1454. https://doi.org/10.1016/j.biotechadv.2015.02.014.

    Article  CAS  PubMed  Google Scholar 

  45. Whitehouse, C. J. C., Bell, S. G., & Wong, L.-L. (2012). P450(BM3) (CYP102A1): connecting the dots. Chemical Society Reviews, 41(3), 1218–1260. https://doi.org/10.1039/c1cs15192d.

    Article  CAS  PubMed  Google Scholar 

  46. Di Nardo, G., & Gilardi, G. (2012). Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites. International Journal of Molecular Sciences, 13(12), 15901–15924. https://doi.org/10.3390/ijms131215901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong, T. S., Arnold, F. H., & Schwaneberg, U. (2004). Laboratory evolution of cytochrome p450 BM-3 monooxygenase for organic cosolvents. Biotechnology and Bioengineering, 85(3), 351–358. https://doi.org/10.1002/bit.10896.

    Article  CAS  PubMed  Google Scholar 

  48. Reinen, J., van Hemert, D., Vermeulen, N. P. E., & Commandeur, J. N. M. (2015). Application of a Continuous-Flow Bioassay to Investigate the Organic Solvent Tolerability of Cytochrome P450 BM3 Mutants. Journal of Biomolecular Screening, 20(10), 1246–1255. https://doi.org/10.1177/1087057115607183.

    Article  CAS  PubMed  Google Scholar 

  49. Eiben, S., Bartelmäs, H., & Urlacher, V. B. (2007). Construction of a thermostable cytochrome P450 chimera derived from self-sufficient mesophilic parents. Applied Microbiology and Biotechnology, 75(5), 1055–1061. https://doi.org/10.1007/s00253-007-0922-z.

    Article  CAS  PubMed  Google Scholar 

  50. Otey, C. R., Silberg, J. J., Voigt, C. A., Endelman, J. B., Bandara, G., & Arnold, F. H. (2004). Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach. Chemistry & Biology, 11(3), 309–318. https://doi.org/10.1016/j.chembiol.2004.02.018.

    Article  CAS  Google Scholar 

  51. Joyce, M. G., Ekanem, I. S., Roitel, O., Dunford, A. J., Neeli, R., Girvan, H. M., Baker, G. J., Curtis, R. A., Munro, A. W., & Leys, D. (2012). The crystal structure of the FAD/NADPH-binding domain of flavocytochrome P450 BM3. The FEBS Journal, 279(9), 1694–1706. https://doi.org/10.1111/j.1742-4658.2012.08544.x.

    Article  CAS  PubMed  Google Scholar 

  52. Schwaneberg, U., Schmidt-Dannert, C., Schmitt, J., & Schmid, R. D. (1999). A Continuous Spectrophotometric Assay for P450 BM-3, a Fatty Acid Hydroxylating Enzyme, and Its Mutant F87A. Analytical Biochemistry, 269(2), 359–366. https://doi.org/10.1006/abio.1999.4047.

    Article  CAS  PubMed  Google Scholar 

  53. Erkelenz, M., Kuo, C.-H., & Niemeyer, C. M. (2011). DNA-mediated assembly of cytochrome P450 BM3 subdomains. Journal of the American Chemical Society, 133(40), 16111–16118. https://doi.org/10.1021/ja204993s.

    Article  CAS  PubMed  Google Scholar 

  54. Lutz, J., Hollmann, F., Ho, T. V., Schnyder, A., Fish, R. H., & Schmid, A. (2004). Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. Journal of Organometallic Chemistry, 689(25), 4783–4790. https://doi.org/10.1016/j.jorganchem.2004.09.044.

    Article  CAS  Google Scholar 

  55. Omura, T., & Sato, R. (1964). THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. The Journal of Biological Chemistry, 239, 2370–2378.

    CAS  PubMed  Google Scholar 

  56. Saab-Rincón, G., Alwaseem, H., Guzmán-Luna, V., Olvera, L., & Fasan, R. (2018). Stabilization of the Reductase Domain in the Catalytically Self-Sufficient Cytochrome P450BM3 by Consensus-Guided Mutagenesis. Chembiochem: A European Journal of Chemical Biology, 19(6), 622–632. https://doi.org/10.1002/cbic.201700546.

    Article  CAS  PubMed  Google Scholar 

  57. Munro, A. W., Lindsay, J. G., Coggins, J. R., Kelly, S. M., & Price, N. C. (1994). Structural and enzymological analysis of the interaction of isolated domains of cytochrome P-450 BM3. FEBS Letters, 343(1), 70–74. https://doi.org/10.1016/0014-5793(94)80609-8.

    Article  CAS  PubMed  Google Scholar 

  58. Argos, P. (1990). An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. Journal of Molecular Biology, 211(4), 943–958. https://doi.org/10.1016/0022-2836(90)90085-Z.

    Article  CAS  PubMed  Google Scholar 

  59. Govindaraj, S., & Poulos, T. L. (1995). Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3. Biochemistry, 34(35), 11221–11226.

    Article  CAS  Google Scholar 

  60. Sevrioukova, I. F., Li, H., Zhang, H., Peterson, J. A., & Poulos, T. L. (1999). Structure of a cytochrome P450-redox partner electron-transfer complex. Proceedings of the National Academy of Sciences of the United States of America, 96(5), 1863–1868.

    Article  CAS  Google Scholar 

  61. Neeli, R., Girvan, H. M., Lawrence, A., Warren, M. J., Leys, D., Scrutton, N. S., & Munro, A. W. (2005). The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Letters, 579(25), 5582–5588. https://doi.org/10.1016/j.febslet.2005.09.023.

    Article  CAS  PubMed  Google Scholar 

  62. Nazor, J., & Schwaneberg, U. (2006). Laboratory Evolution of P450 BM-3 for Mediated Electron Transfer. ChemBioChem, 7(4), 638–644. https://doi.org/10.1002/cbic.200500436.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, L., Güven, G., Li, Y., & Schwaneberg, U. (2011). First steps towards a Zn/Co(III)sep-driven P450 BM3 reactor. Applied Microbiology and Biotechnology, 91(4), 989–999. https://doi.org/10.1007/s00253-011-3290-7.

    Article  CAS  PubMed  Google Scholar 

  64. Tran, N.-H., Nguyen, D., Dwaraknath, S., Mahadevan, S., Chavez, G., Nguyen, A., Dao, T., Mullen, S., Nguyen, T. A., & Cheruzel, L. E. (2013). An efficient light-driven P450 BM3 biocatalyst. Journal of the American Chemical Society, 135(39), 14484–14487. https://doi.org/10.1021/ja409337v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lam, Q., Cortez, A., Nguyen, T. T., Kato, M., & Cheruzel, L. (2016). Chromogenic nitrophenolate-based substrates for light-driven hybrid P450 BM3 enzyme assay. Journal of Inorganic Biochemistry, 158, 86–91. https://doi.org/10.1016/j.jinorgbio.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  66. Tufvesson, P., Lima-Ramos, J., Nordblad, M., & Woodley, J. M. (2011). Guidelines and Cost Analysis for Catalyst Production in Biocatalytic Processes. Organic Process Research & Development, 15(1), 266–274. https://doi.org/10.1021/op1002165.

    Article  CAS  Google Scholar 

  67. Fasan, R., Chen, M. M., Crook, N. C., & Arnold, F. H. (2007). Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties. Angewandte Chemie (International Ed. in English), 46(44), 8414–8418. https://doi.org/10.1002/anie.200702616.

    Article  CAS  Google Scholar 

  68. Fasan, R., Meharenna, Y. T., Snow, C. D., Poulos, T. L., & Arnold, F. H. (2008). Evolutionary history of a specialized p450 propane monooxygenase. Journal of Molecular Biology, 383(5), 1069–1080. https://doi.org/10.1016/j.jmb.2008.06.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Code Availability

(N/A)

Funding

This research was supported by Natural Sciences and Engineering Research Council Innov-UC program (#CUI21-430895-12) and discovery program (#CUI21-430895-12).

Author information

Authors and Affiliations

Authors

Contributions

Thierry Vincent: term, conceptualization, methodology, validation, formal analysis, investigation, resources, Writing – Original Draft, writing—review and editing, visualization, project administration.

Bruno Gaillet: writing— review and editing, supervision, funding acquisition

Alain Garnier: conceptualization, formal analysis, resources, writing—review and editing, supervision, project administration, funding acquisition

Corresponding author

Correspondence to Alain Garnier.

Ethics declarations

Ethics Approval

(N/A)

Consent to Participate

(N/A)

Consent for Publication

Consent is given.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, T., Gaillet, B. & Garnier, A. Optimisation of Cytochrome P450 BM3 Assisted by Consensus-Guided Evolution. Appl Biochem Biotechnol 193, 2893–2914 (2021). https://doi.org/10.1007/s12010-021-03573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03573-1

Keywords

Navigation