Skip to main content

Advertisement

Log in

Effect of Tris Buffer in the Intensity of the Multipoint Covalent Immobilization of Enzymes in Glyoxyl-Agarose Beads

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tris is an extensively used buffer that presents a primary amine group on its structure. In the present work trypsin, chymotrypsin and penicillin G acylase (PGA) were immobilized/stabilized on glyoxyl agarose in presence of different concentrations of Tris (from 0 to 20 mM). The effects of the presence of Tris during immobilization were studied analyzing the thermal stability of the obtained immobilized biocatalysts. The results indicate a reduction of the enzyme stability when immobilized in the presence of Tris. This effect can be observed in inactivations carried out at pH 5, 7, and 9 with all the enzymes assayed. The reduction of enzyme stability increased with the Tris concentration. Another interesting result is that the stability reduction was more noticeable for immobilized PGA than in the other immobilized enzymes, the biocatalysts prepared in presence of 20 mM Tris lost totally the activity at pH 7 just after 1 h of inactivation, while the reference at this time still kept around 61 % of the residual activity. These differences are most likely due to the homogeneous distribution of the Lys groups in PGA compared to trypsin and chymotrypsin (where almost 50% of Lys group are in a small percentage of the protein surface). The results suggest that Tris could be affecting the multipoint covalent immobilization in two different ways, on one hand, reducing the number of available glyoxyl groups of the support during immobilization, and on the other hand, generating some steric hindrances that difficult the formation of covalent bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are available from the authors.

References

  1. Bolivar, J. M., López-Gallego, F., Godoy, C., Rodrigues, D. S., Rodrigues, R. C., Batalla, P., Rocha-Martín, J., Mateo, C., Giordano, R. L. C., & Guisán, J. M. (2009). The presence of thiolated compounds allows the immobilization of enzymes on glyoxyl agarose at mild pH values: New strategies of stabilization by multipoint covalent attachment. Enzyme and Microbial Technology, 45(6–7), 477–483. https://doi.org/10.1016/j.enzmictec.2009.09.001.

    Article  CAS  Google Scholar 

  2. Megías, C., Pedroche, J., Yust, M. D. M., Alaiz, M., Girón-Calle, J., Millán, F., & Vioque, J. (2006). Immobilization of angiotensin-converting enzyme on glyoxyl-agarose. Journal of Agricultural and Food Chemistry, 54(13), 4641–4645. https://doi.org/10.1021/jf0606860.

    Article  CAS  PubMed  Google Scholar 

  3. Bruni, M., Robescu, M. S., Ubiali, D., Marrubini, G., Vanna, R., Morasso, C., Benucci, I., Speranza, G., & Bavaro, T. (2020). Immobilization of γ-glutamyl transpeptidase from equine kidney for the synthesis of kokumi compounds. ChemCatChem, 12(1), 210–218. https://doi.org/10.1002/cctc.201901464.

    Article  CAS  Google Scholar 

  4. Guerrero, C., Valdivia, F., Ubilla, C., Ramírez, N., Gómez, M., Aburto, C., Vera, C., & Illanes, A. (2019). Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. Bioresource Technology, 278(October 2018), 296–302. https://doi.org/10.1016/j.biortech.2018.12.018.

    Article  CAS  PubMed  Google Scholar 

  5. Orrego, A. H., Romero-Fernández, M., Millán-Linares, M., Yust, M., Guisán, J., & Rocha-Martin, J. (2018). Stabilization of enzymes by multipoint covalent attachment on aldehyde-supports: 2-picoline borane as an alternative reducing agent. Catalysts, 8(8), 333. https://doi.org/10.3390/catal8080333.

    Article  CAS  Google Scholar 

  6. Bernal, C., Guzman, F., Illanes, A., & Wilson, L. (2018). Selective and eco-friendly synthesis of lipoaminoacid-based surfactants for food, using immobilized lipase and protease biocatalysts. Food Chemistry, 239, 189–195. https://doi.org/10.1016/j.foodchem.2017.06.105.

    Article  CAS  PubMed  Google Scholar 

  7. Rios, N. S., Pinheiro, M. P., dos Santos, J. C. S., de Fonseca, T. S., Lima, L. D., de Mattos, M. C., et al. (2016). Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of (R,S)-phenylethyl acetate. Journal of Molecular Catalysis B: Enzymatic, 133, 246–258. https://doi.org/10.1016/j.molcatb.2016.08.009.

    Article  CAS  Google Scholar 

  8. Bezerra, T. M. D. S., Bassan, J. C., Santos, V. T. D. O., Ferraz, A., & Monti, R. (2015). Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochemistry, 50(3), 417–423. https://doi.org/10.1016/j.procbio.2014.12.009.

    Article  CAS  Google Scholar 

  9. Urrutia, P., Mateo, C., Guisan, J. M., Wilson, L., & Illanes, A. (2013). Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochemical Engineering Journal, 77, 41–48. https://doi.org/10.1016/j.bej.2013.04.015.

    Article  CAS  Google Scholar 

  10. Bolivar, J. M., Rocha-Martín, J., Mateo, C., & Guisan, J. M. (2012). Stabilization of a highly active but unstable alcohol dehydrogenase from yeast using immobilization and post-immobilization techniques. Process Biochemistry, 47(5), 679–686. https://doi.org/10.1016/j.procbio.2012.01.012.

    Article  CAS  Google Scholar 

  11. Mendes, A. A., Freitas, L., de Carvalho, A. K. F., de Oliveira, P. C., & de Castro, H. F. (2011). Immobilization of a commercial lipase from Penicillium camembertii (Lipase G) by different strategies. Enzyme Research, 2011(1), 1–8. https://doi.org/10.4061/2011/967239.

    Article  CAS  Google Scholar 

  12. Mendes, A. A., Giordano, R. C., Giordano, R. D. L. C., & de Castro, H. F. (2011). Immobilization and stabilization of microbial lipases by multipoint covalent attachment on aldehyde-resin affinity: Application of the biocatalysts in biodiesel synthesis. Journal of Molecular Catalysis B: Enzymatic, 68(1), 109–115. https://doi.org/10.1016/j.molcatb.2010.10.002.

    Article  CAS  Google Scholar 

  13. Lopez-Gallego, F., Rocha-Martin, J., Moreno-Perez, S., Guisan, J., Bolivar, J., Fernández-Lorente, G., et al. (2015). Immobilization of proteins on highly activated glyoxyl supports: Dramatic increase of the enzyme stability via multipoint immobilization on pre-existing carriers. Current Organic Chemistry, 19(17), 1719–1731. https://doi.org/10.2174/138527281917150806125708.

    Article  CAS  Google Scholar 

  14. Huerta, L. M., Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochemistry, 46(1), 245–252. https://doi.org/10.1016/j.procbio.2010.08.018.

    Article  CAS  Google Scholar 

  15. del Yust, M. M., Pedroche, J., del Millán-Linares, M. C., Alcaide-Hidalgo, J. M., & Millán, F. (2010). Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase. Food Chemistry, 122(4), 1212–1217. https://doi.org/10.1016/j.foodchem.2010.03.121.

    Article  CAS  Google Scholar 

  16. Manrich, A., Komesu, A., Adriano, W. S., Tardioli, P. W., & Giordano, R. L. C. (2010). Immobilization and stabilization of xylanase by multipoint covalent attachment on agarose and on chitosan supports. Applied Biochemistry and Biotechnology, 161(1–8), 455–467. https://doi.org/10.1007/s12010-009-8897-0.

    Article  CAS  PubMed  Google Scholar 

  17. Rodrigues, R. C., Godoy, C. A., Volpato, G., Ayub, M. A. Z., Fernandez-Lafuente, R., & Guisan, J. M. (2009). Immobilization-stabilization of the lipase from Thermomyces lanuginosus: Critical role of chemical amination. Process Biochemistry, 44(9), 963–968. https://doi.org/10.1016/j.procbio.2009.04.015.

    Article  CAS  Google Scholar 

  18. Bolivar, J. M., Rocha-Martin, J., Mateo, C., Cava, F., Berenguer, J., Vega, D., Fernandez-Lafuente, R., & Guisan, J. M. (2009). Purification and stabilization of a glutamate dehygrogenase from Thermus thermophilus via oriented multisubunit plus multipoint covalent immobilization. Journal of Molecular Catalysis B: Enzymatic, 58(1–4), 158–163. https://doi.org/10.1016/j.molcatb.2008.12.010.

    Article  CAS  Google Scholar 

  19. Fernandez-Lorente, G., Godoy, C. A., Mendes, A. A., Lopez-Gallego, F., Grazu, V., de las Rivas, B., et al. (2008). Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Biomacromolecules, 9(9), 2553–2561. https://doi.org/10.1021/bm800609g.

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigues, D. S., Mendes, A. A., Adriano, W. S., Gonçalves, L. R. B., & Giordano, R. L. C. (2008). Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. Journal of Molecular Catalysis B: Enzymatic, 51(3–4), 100–109. https://doi.org/10.1016/j.molcatb.2007.11.016.

    Article  CAS  Google Scholar 

  21. Pedroche, J., del Mar Yust, M., Mateo, C., Fernández-Lafuente, R., Girón-Calle, J., Alaiz, M., Vioque, J., Guisán, J. M., & Millán, F. (2007). Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: Correlation between enzyme-support linkages and thermal stability. Enzyme and Microbial Technology, 40(5), 1160–1166. https://doi.org/10.1016/j.enzmictec.2006.08.023.

    Article  CAS  Google Scholar 

  22. Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Fernandez-Lafuente, R., Guisan, J. M., & Mateo, C. (2007). Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme and Microbial Technology, 40(4), 540–546. https://doi.org/10.1016/j.enzmictec.2006.05.009.

    Article  CAS  Google Scholar 

  23. Lopez-Gallego, F., Betancor, L., Hidalgo, A., Dellamora-Ortiz, G., Mateo, C., Fernández-Lafuente, R., & Guisán, J. M. (2007). Stabilization of different alcohol oxidases via immobilization and post immobilization techniques. Enzyme and Microbial Technology, 40(2), 278–284. https://doi.org/10.1016/j.enzmictec.2006.04.021.

    Article  CAS  Google Scholar 

  24. Bernal, C., Urrutia, P., Illanes, A., & Wilson, L. (2013). Hierarchical meso-macroporous silica grafted with glyoxyl groups: Opportunities for covalent immobilization of enzymes. New Biotechnology, 30(5), 500–506. https://doi.org/10.1016/j.nbt.2013.01.011.

    Article  CAS  PubMed  Google Scholar 

  25. Tardioli, P. W., Zanin, G. M., & de Moraes, F. F. (2006). Characterization of Thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on glyoxyl-agarose. Enzyme and Microbial Technology, 39(6), 1270–1278. https://doi.org/10.1016/j.enzmictec.2006.03.011.

    Article  CAS  Google Scholar 

  26. Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisán, J. M., Fernández-Lafuente, R., & Mateo, C. (2006). Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 125(1), 85–94. https://doi.org/10.1016/j.jbiotec.2006.01.028.

    Article  CAS  PubMed  Google Scholar 

  27. Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F., Pessela, B. C. C., Hidalgo, A., Fernández-Lorente, G., Fernández-Lafuente, R., & Guisán, J. M. (2006). Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 39(2), 274–280. https://doi.org/10.1016/j.enzmictec.2005.10.014.

    Article  CAS  Google Scholar 

  28. Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Fernandez-Lafuente, R., Guisan, J. M., & Mateo, C. (2006). Stabilization of a formate dehydrogenase by covalent immobilization on highly activated glyoxyl-agarose supports. Biomacromolecules, 7(3), 669–673. https://doi.org/10.1021/bm050947z.

    Article  CAS  PubMed  Google Scholar 

  29. Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Dellamora-Ortiz, G., Guisán, J. M., & Fernández-Lafuente, R. (2006). Preparation of a very stable immobilized biocatalyst of glucose oxidase from Aspergillus niger. Journal of Biotechnology, 121(2), 284–289. https://doi.org/10.1016/j.jbiotec.2005.07.014.

    Article  CAS  PubMed  Google Scholar 

  30. Mateo, C., Abian, O., Bernedo, M., Cuenca, E., Fuentes, M., Fernandez-Lorente, G., Palomo, J. M., Grazu, V., Pessela, B. C. C., Giacomini, C., Irazoqui, G., Villarino, A., Ovsejevi, K., Batista-Viera, F., Fernandez-Lafuente, R., & Guisán, J. M. (2005). Some special features of glyoxyl supports to immobilize proteins. Enzyme and Microbial Technology, 37(4), 456–462. https://doi.org/10.1016/j.enzmictec.2005.03.020.

    Article  CAS  Google Scholar 

  31. Kuroiwa, T., Shoda, H., Ichikawa, S., Sato, S., & Mukataka, S. (2005). Immobilization and stabilization of pullulanase from Klebsiella pneumoniae by a multipoint attachment method using activated agar gel supports. Process Biochemistry, 40(8), 2637–2642. https://doi.org/10.1016/j.procbio.2004.10.002.

    Article  CAS  Google Scholar 

  32. López-Gallego, F., Montes, T., Fuentes, M., Alonso, N., Grazu, V., Betancor, L., Guisán, J. M., & Fernández-Lafuente, R. (2005). Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. Journal of Biotechnology, 116(1), 1–10. https://doi.org/10.1016/j.jbiotec.2004.09.015.

    Article  CAS  PubMed  Google Scholar 

  33. Tardioli, P. W., Sousa, R., Giordano, R. C., & Giordano, R. L. C. (2005). Kinetic model of the hydrolysis of polypeptides catalyzed by Alcalase® immobilized on 10% glyoxyl-agarose. Enzyme and Microbial Technology, 36(4), 555–564. https://doi.org/10.1016/j.enzmictec.2004.12.002.

    Article  CAS  Google Scholar 

  34. Rocchietti, S., Ubiali, D., Terreni, M., Albertini, A. M., Fernández-Lafuente, R., Guisán, J. M., & Pregnolato, M. (2004). Immobilization and stabilization of recombinant multimeric uridine and purine nucleoside phosphorylases from Bacillus subtilis. Biomacromolecules, 5(6), 2195–2200. https://doi.org/10.1021/bm049765f.

    Article  CAS  PubMed  Google Scholar 

  35. Tardioli, P. W., Vieira, M. F., Vieira, A. M. S., Zanin, G. M., Betancor, L., Mateo, C., Fernández-Lorente, G., & Guisán, J. M. (2011). Immobilization-stabilization of glucoamylase: Chemical modification of the enzyme surface followed by covalent attachment on highly activated glyoxyl-agarose supports. Process Biochemistry, 46(1), 409–412. https://doi.org/10.1016/j.procbio.2010.08.011.

    Article  CAS  Google Scholar 

  36. Abian, O., Grazú, V., Hermoso, J., González, R., García, J. L., Fernández-Lafuente, R., & Guisán, J. M. (2004). Stabilization of penicillin G acylase from Escherichia coli: Site-directed mutagenesis of the protein surface to increase multipoint covalent attachment. Applied and Environmental Microbiology, 70(2), 1249–1251. https://doi.org/10.1128/AEM.70.2.1249-1251.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tardioli, P. W., Pedroche, J., Giordano, R. L. C., Fernandez-Lafuente, R., & Guisan, J. M. (2003). Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose. Biotechnology Progress, 19(2), 352–360. https://doi.org/10.1021/bp025588n.

    Article  CAS  PubMed  Google Scholar 

  38. Tardioli, P. W., Fernandez-Lafuente, R., Guisan, J. M., & Giordano, R. L. C. (2003). Design of new immobilized-stabilized carboxypeptidase A derivative for production of aromatic free hydrolysates of proteins. Biotechnology Progress, 19(2), 565–574. https://doi.org/10.1021/bp0256364.

    Article  CAS  PubMed  Google Scholar 

  39. Betancor, L., Hidalgo, A., Fernández-Lorente, G., Mateo, C., Fernández-Lafuente, R., & Guisan, J. M. (2003). Preparation of a stable biocatalyst of bovine liver catalase using immobilization and postimmobilization techniques. Biotechnology Progress, 19(3), 763–767. https://doi.org/10.1021/bp025785m.

    Article  CAS  PubMed  Google Scholar 

  40. Toogood, H. S., Taylor, I. N., Brown, R. C., Taylor, S. J. C., McCague, R., & Littlechild, J. A. (2002). Immobilisation of the thermostable l-aminoacylase from Thermococcus litoralis to generate a reusable industrial biocatalyst. Biocatalysis and Biotransformation, 20(4), 241–249. https://doi.org/10.1080/10242420290029472.

    Article  CAS  Google Scholar 

  41. Fernandez-Lafuente, R., Cowan, D. A., & Wood, A. N. P. (1995). Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzyme and Microbial Technology, 17(4), 366–372. https://doi.org/10.1016/0141-0229(94)00089-1.

    Article  Google Scholar 

  42. Guisán, J. (1988). Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzyme and Microbial Technology, 10(6), 375–382. https://doi.org/10.1016/0141-0229(88)90018-X.

    Article  Google Scholar 

  43. Suárez, S., Guerrero, C., Vera, C., & Illanes, A. (2018). Effect of particle size and enzyme load on the simultaneous reactions of lactose hydrolysis and transgalactosylation with glyoxyl-agarose immobilized β-galactosidase from Aspergillus oryzae. Process Biochemistry, 73, 56–64. https://doi.org/10.1016/j.procbio.2018.08.016.

    Article  CAS  Google Scholar 

  44. Becaro, A. A., Mendes, A. A., Adriano, W. S., Lopes, L. A., Vanzolini, K. L., Fernandez-Lafuente, R., et al. (2020). Immobilization and stabilization of d-hydantoinase from Vigna angularis and its use in the production of N-carbamoyl-D-phenylglycine. Improvement of the reaction yield by allowing chemical racemization of the substrate. Process Biochemistry, 95(February), 251–259. https://doi.org/10.1016/j.procbio.2020.02.017.

    Article  CAS  Google Scholar 

  45. Ubilla, C., Ramírez, N., Valdivia, F., Vera, C., Illanes, A., & Guerrero, C. (2020). Synthesis of lactulose in continuous stirred tank reactor with β-galactosidase of Apergillus oryzae immobilized in monofunctional glyoxyl agarose support. Frontiers in Bioengineering and Biotechnology, 8, 1–14. https://doi.org/10.3389/fbioe.2020.00699.

    Article  Google Scholar 

  46. Lopes, L. A., Novelli, P. K., Fernandez-Lafuente, R., Tardioli, P. W., & Giordano, R. L. C. (2020). Glyoxyl-activated agarose as support for covalently link Novo-Pro D: Biocatalysts performance in the hydrolysis of casein. Catalysts, 10(5), 466. https://doi.org/10.3390/catal10050466.

    Article  CAS  Google Scholar 

  47. Siar, E.-H. H., Morellon-Sterling, R., Zidoune, M. N., & Fernandez-Lafuente, R. (2020). Use of glyoxyl-agarose immobilized ficin extract in milk coagulation: Unexpected importance of the ficin loading on the biocatalysts. International Journal of Biological Macromolecules, 144, 419–426.

    Article  CAS  Google Scholar 

  48. Blanco, R. M., & Guisán, J. (1989). Stabilization of enzymes by multipoint covalent attachment to agarose-aldehyde gels. Borohydride reduction of trypsin-agarose derivatives. Enzyme and Microbial Technology, 11(6), 360–366. https://doi.org/10.1016/0141-0229(89)90020-3.

    Article  CAS  Google Scholar 

  49. Grazú, V., López-Gallego, F., Montes, T., Abian, O., González, R., Hermoso, J. A., García, J. L., Mateo, C., & Guisán, J. M. (2010). Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 45(3), 390–398. https://doi.org/10.1016/j.procbio.2009.10.013.

    Article  CAS  Google Scholar 

  50. Grazu, V., López-Gallego, F., & Guisán, J. M. (2012). Tailor-made design of penicillin G acylase surface enables its site-directed immobilization and stabilization onto commercial mono-functional epoxy supports. Process Biochemistry, 47(12), 2538–2541. https://doi.org/10.1016/j.procbio.2012.07.010.

    Article  CAS  Google Scholar 

  51. Mansfeld, J., & Ulbrich-Hofmann, R. (2000). Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics. Biotechnology and Applied Biochemistry, 32(3), 189–195. https://doi.org/10.1042/BA20000059.

    Article  CAS  PubMed  Google Scholar 

  52. Fernandez-Lafuente, R. (2009). Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45(6–7), 405–418. https://doi.org/10.1016/j.enzmictec.2009.08.009.

    Article  CAS  Google Scholar 

  53. Zucca, P., Fernandez-Lafuente, R., & Sanjust, E. (2016). Agarose and its derivatives as supports for enzyme immobilization. Molecules, 21(11), 1577. https://doi.org/10.3390/molecules21111577.

    Article  CAS  PubMed Central  Google Scholar 

  54. Alvaro, G., Fernandez-Lafuente, R., Blanco, R. M., & Guisán, J. M. (1990). Immobilization-stabilization of Penicillin G acylase from Escherichia coli. Applied Biochemistry and Biotechnology, 26(2), 181–195. https://doi.org/10.1007/BF02921533.

    Article  CAS  PubMed  Google Scholar 

  55. Gomori, G. (1955). Preparation of buffers for use in enzyme studies. Methods Enzymology, 1, 138–146. https://doi.org/10.1016/0076-6879(55)01020-3.

    Article  CAS  Google Scholar 

  56. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  57. Grazu, V., Betancor, L., Montes, T., Lopez-Gallego, F., Guisan, J. M., & Fernandez-Lafuente, R. (2006). Glyoxyl agarose as a new chromatographic matrix. Enzyme and Microbial Technology, 38(7), 960–966. https://doi.org/10.1016/j.enzmictec.2005.08.034.

    Article  CAS  Google Scholar 

  58. Rocha-Martin, J., Fernández-Lorente, G., & Guisan, J. M. (2018). Sequential hydrolysis of commercial casein hydrolysate by immobilized trypsin and thermolysin to produce bioactive phosphopeptides. Biocatalysis and Biotransformation, 36(2), 159–171. https://doi.org/10.1080/10242422.2017.1308499.

    Article  CAS  Google Scholar 

  59. Moyano, F., Setien, E., Silber, J. J., & Correa, N. M. (2013). Enzymatic hydrolysis of N-benzoyl-l-tyrosine p-nitroanilide by α-chymotrypsin in DMSO-water/AOT/ n-heptane reverse micelles. A unique interfacial effect on the enzymatic activity. Langmuir, 29(26), 8245–8254. https://doi.org/10.1021/la401103q.

    Article  CAS  PubMed  Google Scholar 

  60. Kutzbach, C., & Rauenbusch, E. (1974). Preparation and general properties of crystalline penicillin acylase from Escherichia coli ATCC 11 105. Hoppe-Seyler´s Zeitschrift für physiologische Chemie, 355(1), 45–53. https://doi.org/10.1515/bchm2.1974.355.1.45.

    Article  CAS  PubMed  Google Scholar 

  61. Boudrant, J., Woodley, J. M., & Fernandez-Lafuente, R. (2020). Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry, 90, 66–80. https://doi.org/10.1016/j.procbio.2019.11.026.

    Article  CAS  Google Scholar 

  62. Blanco, R. M., & Guisán, J. (1988). Protecting effect of competitive inhibitors during very intense insolubilized enzyme-activated support multipoint attachments: Trypsin (amine)-agarose (aldehyde) system. Enzyme and Microbial Technology, 10(4), 227–232. https://doi.org/10.1016/0141-0229(88)90071-3.

    Article  CAS  Google Scholar 

  63. Siar, E.-H., Zaak, H., Kornecki, J. F., Zidoune, M. N., Barbosa, O., & Fernandez-Lafuente, R. (2017). Stabilization of ficin extract by immobilization on glyoxyl agarose. Preliminary characterization of the biocatalyst performance in hydrolysis of proteins. Process Biochemistry, 58, 98–104. https://doi.org/10.1016/j.procbio.2017.04.009.

    Article  CAS  Google Scholar 

  64. Guisán, J. M., Bastida, A., Cuesta, C., Fernandez-Lufuente, R., & Rosell, C. M. (1991). Immobilization-stabilization of α-chymotrypsin by covalent attachment to aldehyde-agarose gels. Biotechnology and Bioengineering, 38(10), 1144–1152. https://doi.org/10.1002/bit.260381005.

    Article  PubMed  Google Scholar 

  65. Blanco, R. M., Calvete, J. J., & Guisán, J. (1989). Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint attachment. Enzyme and Microbial Technology, 11(6), 353–359. https://doi.org/10.1016/0141-0229(89)90019-7.

    Article  CAS  Google Scholar 

  66. Rosell, C. M., Fernandez-Lafuente, R., & Guisan, J. M. (1995). Modification of enzyme properties by the use of inhibitors during their stabilisation by multipoint covalent attachment. Biocatalysis and Biotransformation, 12(1), 67–76. https://doi.org/10.3109/10242429508998152.

    Article  CAS  Google Scholar 

  67. Zaak, H., Fernandez-Lopez, L., Velasco-Lozano, S., Alcaraz-Fructuoso, M. T., Sassi, M., Lopez-Gallego, F., & Fernandez-Lafuente, R. (2017). Effect of high salt concentrations on the stability of immobilized lipases: Dramatic deleterious effects of phosphate anions. Process Biochemistry, 62, 128–134. https://doi.org/10.1016/j.procbio.2017.07.018.

    Article  CAS  Google Scholar 

  68. Kornecki, J. F., Carballares, D., Morellon-Sterling, R., Siar, E. H., Kashefi, S., Chafiaa, M., Arana-Peña, S., Rios, N. S., Gonçalves, L. R. B., & Fernandez-Lafuente, R. (2020). Influence of phosphate anions on the stability of immobilized enzymes. Effect of enzyme nature, immobilization protocol and inactivation conditions. Process Biochemistry, 95, 288–296. https://doi.org/10.1016/j.procbio.2020.02.025.

    Article  CAS  Google Scholar 

  69. Alaiz, M., Navarro, J. L., Girón, J., & Vioque, E. (1992). Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. Journal of Chromatography A, 591(1–2), 181–186. https://doi.org/10.1016/0021-9673(92)80236-N.

    Article  CAS  Google Scholar 

  70. Hunt, J. E., Friend, D. S., Gurish, M. F., Feyfant, E., Šali, A., Huang, C., Ghildyal, N., Stechschulte, S., Austen, K. F., & Stevens, R. L. (1997). Mouse mast cell protease 9, a novel member of the chromosome 14 family of serine proteases that is selectively expressed in uterine mast cells. Journal of Biological Chemistry, 272(46), 29158–29166. https://doi.org/10.1074/jbc.272.46.29158.

    Article  CAS  Google Scholar 

  71. Dos Santos, J. C. S., Rueda, N., Barbosa, O., Fernández-Sánchez, J. F., Medina-Castillo, A. L., Ramón-Márquez, T., et al. (2015). Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 5(27), 20639–20649. https://doi.org/10.1039/c4ra16926c.

    Article  Google Scholar 

  72. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, Á., Rodrigues, R. C., & Fernandez-Lafuente, R. (2013). Heterofunctional supports in enzyme immobilization: From traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 14(8), 2433–2462. https://doi.org/10.1021/bm400762h.

    Article  CAS  PubMed  Google Scholar 

  73. Mateo, C., Fernández-Lorente, G., Abian, O., Fernández-Lafuente, R., & Guisán, J. M. (2000). Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage. Biomacromolecules, 1(4), 739–745. https://doi.org/10.1021/bm000071q.

    Article  CAS  PubMed  Google Scholar 

  74. Mateo, C., Grazú, V., Pessela, B. C. C., Montes, T., Palomo, J. M., Torres, R., López-Gallego, F., Fernández-Lafuente, R., & Guisán, J. M. (2007). Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochemical Society Transactions, 35(6), 1593–1601. https://doi.org/10.1042/BST0351593.

    Article  CAS  PubMed  Google Scholar 

  75. Sanchez, A., Cruz, J., Rueda, N., dos Santos, J. C. S., Torres, R., Ortiz, C., Villalonga, R., & Fernandez-Lafuente, R. (2016). Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. RSC Advances, 6(33), 27329–27334. https://doi.org/10.1039/C6RA03627A.

    Article  CAS  Google Scholar 

  76. Morellon-Sterling, R., Siar, E.-H., Braham, S. A., de Andrades, D., Pedroche, J., Millán, M. D. C., & Fernandez-Lafuente, R. (2021). Effect of amine length in the interference of the multipoint covalent immobilization of enzymes on glyoxyl agarose beads. J. Biotechnol., 329, 128–142. https://doi.org/10.1016/j.jbiotec.2021.02.005.

    Article  CAS  PubMed  Google Scholar 

  77. Mateo, C., Abian, O., Fernandez-Lafuente, R., & Guisan, J. M. (2000). Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment☆. Enzyme and Microbial Technology, 26(7), 509–515. https://doi.org/10.1016/S0141-0229(99)00188-X.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RMS thanks to Ministerio de Educacion-Spanish Government for a FPU fellowship, and SAB and EHS thank Algerian Ministry of higher education and scientific research for their fellowships. The help and suggestions from Dr. Ángel Berenguer (Departamento de Química Inorgánica, Universidad de Alicante) are gratefully recognized.

Code Availability

Not applicable.

Funding

The research has been supported by Ministerio de Ciencia e Innovación-Spanish Government (project number CTQ2017-86170-R).

Author information

Authors and Affiliations

Authors

Contributions

In this paper, Roberto Morellon-Sterling, El-Hocine Siar, Sabrina Ait Braham, and Diandra de Andrades prepared the biocatalysts and analyzed their performance, under the supervision of Rafa C. Rodrigues, Ali Aksas, and Roberto Fernandez-Lafuente. Justo Pedroche and Ma del Carmen Millán analyzed the amino-acid composition. Roberto Fernandez-Lafuente designed the experiments. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Roberto Fernandez-Lafuente.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare that they consent to participate.

Consent for Publication

The authors declare that they consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braham, S.A., Morellon-Sterling, R., de Andrades, D. et al. Effect of Tris Buffer in the Intensity of the Multipoint Covalent Immobilization of Enzymes in Glyoxyl-Agarose Beads. Appl Biochem Biotechnol 193, 2843–2857 (2021). https://doi.org/10.1007/s12010-021-03570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03570-4

Keywords

Navigation