Skip to main content
Log in

Discovery of Novel Cyclic Salt Bridge in Thermophilic Bacterial Protease and Study of its Sequence and Structure

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The plausible explanation behind the stability of thermophilic protein is still yet to be defined more clearly. Here, an in silico study has been undertaken by investigating the sequence and structure of protease from thermophilic (tPro) bacteria and mesophilic (mPro) bacteria. Results showed that charged and uncharged polar residues have higher abundance in tPro. In extreme environment, the tPro is stabilized by high number of isolated and network salt bridges. A novel cyclic salt bridge is also found in a structure of tPro. High number of metal ion-binding site also helps in protein stabilization of thermophilic protease. Aromatic-aromatic interactions also play a crucial role in tPro stabilization. Formation of long network aromatic-aromatic interactions also first time reported here. Finally, the present study provides a major insight with a newly identified cyclic salt bridge in the stability of the enzyme, which may be helpful for protein engineering. It is also used in industrial applications for human welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sawle, L., & Ghosh, K. (2011). How do thermophilic proteins and proteomes withstand high temperature? Biophysical Journal, 101(1), 217–227. https://doi.org/10.1016/j.bpj.2011.05.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, Q., Cen, Z., & Zhao, J. (2015). The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology., 30(2), 97–106. https://doi.org/10.1152/physiol.00066.2013.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, J., Yu, H., & Shen, Z. (2008). Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 27(4), 529–535. https://doi.org/10.1016/j.jmgm.2008.09.004.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar, S., Tsai, C. J., Ma, B., & Nussinov, R. (2000). Contribution of salt bridges toward protein thermostability. Journal of Biomolecular Structure and Dynamics, 17(sup1), 79–85. https://doi.org/10.1080/07391102.2000.10506606.

    Article  PubMed  Google Scholar 

  5. Chan, C. H., Yu, T. H., & Wong, K. B. (2011). Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One, 6(6), e21624. https://doi.org/10.1371/journal.pone.0021624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Missimer, J. H., Steinmetz, M. O., Baron, R., Winkler, F. K., Kammerer, R. A., Daura, X., & Van Gunsteren, W. F. (2007). Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Science., 16(7), 1349–1359. https://doi.org/10.1110/ps.062542907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar, S., Ma, B., Tsai, C. J., & Nussinov, R. (2000). Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins: Structure, Function, and Bioinformatics, 38(4), 368–383. https://doi.org/10.1002/(SICI)1097-0134(20000301)38.

    Article  CAS  Google Scholar 

  8. Sawant, R., & Nagendran, S. (2014). Protease: an enzyme with multiple industrial applications. World Journal of Pharmacy and Pharmaceutical Sciences., 3(6), 568–579.

    CAS  Google Scholar 

  9. Walsh, G. (2015). Industrial enzymes: proteases and carbrohydrases. Proteins: biochemistry and biotechnology., 9, 327–369. https://doi.org/10.1002/9781119117599.ch12.

    Article  Google Scholar 

  10. Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied microbiology and biotechnology., 59(1), 15–32. https://doi.org/10.1007/s00253-002-0975-y.

    Article  CAS  PubMed  Google Scholar 

  11. Paul, T., Halder, S. K., Das, A., Ghosh, K., Mandal, A., Payra, P., Barman, P., Mohapatra, P. K., Pati, B. R., & Mondal, K. C. (2015). Production of chitin and bioactive materials from black tiger shrimp (Penaeus monodon) shell waste by the treatment of bacterial protease cocktail. 3. Biotech., 5(4), 483–493. https://doi.org/10.1007/s13205-014-0250-9.

    Article  Google Scholar 

  12. Paul, T., Das, A., Mandal, A., Jana, A., Halder, S. K., Mohapatra, P. K., Pati, B. R., & Mondal, K. C. (2014). Smart cleaning properties of a multi tolerance keratinolytic protease from an extremophilic Bacillus tequilensis hsTKB2: prediction of enzyme modification site. Waste and Biomass Valorization., 5(6), 931–945. https://doi.org/10.1007/s12649-014-9310-y.

    Article  CAS  Google Scholar 

  13. Sethi, B. K., Jana, A., Nanda, P. K., Das Mohapatra, P. K., & Sahoo, S. L. (2016). Thermostable acidic protease production in Aspergillus terreus NCFT 4269.10 using chickling vetch peels. Journal of Taibah University for Science., 10(4), 571–583. https://doi.org/10.1016/j.jtusci.2015.11.001.

    Article  Google Scholar 

  14. Banerjee, A., Pal, S., Paul, T., Mondal, K. C., Pati, B. R., Sen, A., & Mohapatra, P. K. (2014). Characterization of Bacillus anthracis proteases through protein-protein interaction: an in silico study of anthrax pathogenicity. TANG., 4(1), 51–62 https://doi.org/10.5667/tang.2013.0031.

    Google Scholar 

  15. Guangrong H, Tiejing Y, Po H, Jiaxing J. Purification and characterization of a protease from thermophilic Bacillus strain HS08. African Journal of Biotechnology. 2006;5(24). http://www.academicjournals.org/AJB

  16. Merheb, C. W., Cabral, H., Gomes, E., & Da-Silva, R. (2007). Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein. Food Chemistry., 104(1), 127–131. https://doi.org/10.1016/j.foodchem.2006.11.010.

    Article  CAS  Google Scholar 

  17. Lasa, I., & Berenguer, J. (1993). Thermophilic enzymes and their biotechnological potential. Microbiologia., 9(2), 77–89.

    CAS  PubMed  Google Scholar 

  18. Cowan, D., Daniel, R., & Morgan, H. (1985). Thermophilic proteases: properties and potential applications. Trends in Biotechnology, 3(3), 68–72. https://doi.org/10.1016/0167-7799(85)90080-0.

    Article  CAS  Google Scholar 

  19. Bruins, M. E., Janssen, A. E., & Boom, R. M. (2001). Thermozymes and their applications. Applied Biochemistry and Biotechnology, 90(2), 155–186. https://doi.org/10.1385/abab:90:2:155.

    Article  CAS  PubMed  Google Scholar 

  20. Katrolia, P., Jia, H., Yan, Q., Song, S., Jiang, Z., & Xu, H. (2012). Characterization of a protease-resistant α-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides. Bioresource technology., 110, 578–586. https://doi.org/10.1016/j.biortech.2012.01.144.

    Article  CAS  PubMed  Google Scholar 

  21. Tavano, O. L., Berenguer-Murcia, A., Secundo, F., & Fernandez-Lafuente, R. (2018). Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety, 17(2), 412–436. https://doi.org/10.1111/1541-4337.12326.

    Article  PubMed  Google Scholar 

  22. Herrera-Marquez, O., Fernandez-Serrano, M., Pilamala, M., Jacome, M. B., & Luzon, G. (2019). Stability studies of an amylase and a protease for cleaning processes in the food industry. Food and Bioproducts Processing, 117, 64–73. https://doi.org/10.1016/j.fbp.2019.06.015.

    Article  CAS  Google Scholar 

  23. UniProt Consortium. (2015). UniProt: a hub for protein information. Nucleic Acids Research, 43(D1), D204–D212. https://doi.org/10.1093/nar/gku989.

    Article  CAS  Google Scholar 

  24. Pearson, W. R. (1991). Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics., 11(3), 635–650. https://doi.org/10.1016/0888-7543(91)90071-L.

    Article  CAS  PubMed  Google Scholar 

  25. Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., & Berman, H. M. (2006). The RCSB PDB information portal for structural genomics. Nucleic acids research, 34(suppl_1), D302-D305. https://doi.org/10.1093/nar/gkj120

  26. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., & Thompson, J. D. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/msb.2011.75.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Clamp, M., Cuff, J., Searle, S. M., & Barton, G. J. (2004). The jalview java alignment editor. Bioinformatics, 20(3), 426–427. https://doi.org/10.1093/bioinformatics/btg430.

    Article  CAS  PubMed  Google Scholar 

  28. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571-607). Humana press. https://doi.org/10.1385/1-59259-890-0:571.

  29. Jones, D. D. (1975). ProtScale tool: amino acid scale: refractivity. Journal of Theoretical Biology, 50(1), 167–184. https://doi.org/10.1016/0022-5193(75)90031-4.

    Article  CAS  PubMed  Google Scholar 

  30. Zakeri, A., Khoshsorour, S., Karami Fath, M., Pourzardosht, N., Fazeli, F., & Khalili, S. (2020). Structural analyses and engineering of the pmHAS enzyme to improve its functional performance: an in silico study. Journal of Carbohydrate Chemistry, 39(7), 1–20. https://doi.org/10.1080/07328303.2020.1821041.

    Article  CAS  Google Scholar 

  31. Goddard, T. D., Huang, C. C., & Ferrin, T. E. (2007). Visualizing density maps with UCSF chimera. Journal of Structural Biology, 157(1), 281–287. https://doi.org/10.1016/j.jsb.2006.06.010.

    Article  CAS  PubMed  Google Scholar 

  32. Vriend, G. (1990). WHAT IF: a molecular modeling and drug design program. Journal of Molecular Graphics, 8(1), 52–56. https://doi.org/10.1016/0263-7855(90)80070-V.

    Article  CAS  PubMed  Google Scholar 

  33. Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: protein interactions calculator. Nucleic acids research, 35(suppl_2), W473-W476. https://doi.org/10.1093/nar/gkm423.

  35. Chong, S. H., Lee, C., Kang, G., Park, M., & Ham, S. (2011). Structural and thermodynamic investigations on the aggregation and folding of acylphosphatase by molecular dynamics simulations and solvation free energy analysis. Journal of the American Chemical Society, 133(18), 7075–7083. https://doi.org/10.1021/ja1116233.

    Article  CAS  PubMed  Google Scholar 

  36. Gamage, D. G., Gunaratne, A., Periyannan, G. R., & Russell, T. G. (2019). Applicability of instability index for in vitro protein stability prediction. Protein and Peptide Letters, 26(5), 339–347. https://doi.org/10.2174/0929866526666190228144219.

    Article  CAS  PubMed  Google Scholar 

  37. Elizalde, B. E., Pilosof, A. M. R., & Bartholomai, G. B. (1991). Prediction of emulsion instability from emulsion composition and physicochemical properties of proteins. Journal of Food Science, 56(1), 116–120. https://doi.org/10.1111/j.1365-2621.1991.tb07989.x.

    Article  CAS  Google Scholar 

  38. Coleman, R. G., & Sharp, K. A. (2010). Protein pockets: inventory, shape, and comparison. Journal of Chemical Information and Modeling, 50(4), 589–603. https://doi.org/10.1021/ci900397t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stank, A., Kokh, D. B., Fuller, J. C., & Wade, R. C. (2016). Protein binding pocket dynamics. Accounts of Chemical Research, 49(5), 809–815. https://doi.org/10.1021/acs.accounts.5b00516.

    Article  CAS  PubMed  Google Scholar 

  40. Gromiha, M. M., Pathak, M. C., Saraboji, K., Ortlund, E. A., & Gaucher, E. A. (2013). Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins: Structure, Function, and Bioinformatics, 81(4), 715–721. https://doi.org/10.1002/prot.24232.

    Article  CAS  Google Scholar 

  41. Strop, P., & Mayo, S. L. (2000). Contribution of surface salt bridges to protein stability. Biochemistry, 39(6), 1251–1255. https://doi.org/10.1021/bi992257j.

    Article  CAS  PubMed  Google Scholar 

  42. Chong, S. H., & Ham, S. (2014). Interaction with the surrounding water plays a key role in determining the aggregation propensity of proteins. Angewandte Chemie International Edition, 53(15), 3961–3964. https://doi.org/10.1002/anie.201309317.

    Article  CAS  PubMed  Google Scholar 

  43. Sindelar, C. V., Hendsch, Z. S., & Tidor, B. (1998). Effects of salt bridges on protein structure and design. Protein Science, 7(9), 1898–1914. https://doi.org/10.1002/pro.5560070906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anjana, R., Vaishnavi, M. K., Sherlin, D., Kumar, S. P., Naveen, K., Kanth, P. S., & Sekar, K. (2012). Aromatic-aromatic interactions in structures of proteins and protein-DNA complexes: a study based on orientation and distance. Bioinformation, 8(24), 1220–1224. https://doi.org/10.6026/97320630081220.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lanzarotti, E., Biekofsky, R. R., Estrin, D. A., Marti, M. A., & Turjanski, A. G. (2011). Aromatic–aromatic interactions in proteins: beyond the dimer. Journal of Chemical Information and Modeling, 51(7), 1623–1633. https://doi.org/10.1021/ci200062e.

    Article  CAS  PubMed  Google Scholar 

  46. Gromiha, M. M., Oobatake, M., & Sarai, A. (1999). Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophysical Chemistry, 82(1), 51–67. https://doi.org/10.1016/S0301-4622(99)00103-9.

    Article  CAS  PubMed  Google Scholar 

  47. Dougherty, D. A. (2013). The cation− π interaction. Accounts of Chemical Research, 46(4), 885–893. https://doi.org/10.1021/ar300265y.

    Article  CAS  PubMed  Google Scholar 

  48. Prajapati, R. S., Sirajuddin, M., Durani, V., Sreeramulu, S., & Varadarajan, R. (2006). Contribution of cation− π interactions to protein stability. Biochemistry, 45(50), 15000–15010. https://doi.org/10.1021/bi061275f.

    Article  CAS  PubMed  Google Scholar 

  49. Miranda, F. F., Thórólfsson, M., Teigen, K., Sanchez-Ruiz, J. M., & Martínez, A. (2004). Structural and stability effects of phosphorylation: localized structural changes in phenylalanine hydroxylase. Protein Science, 13(5), 1219–1226. https://doi.org/10.1110/ps.03595904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, C., Ba, Q., Li, W., Salovska, B., Hou, P., Mueller, T, Liu, Y. (2020). Global impact of phosphorylation on protein endurance. bioRxiv. https://doi.org/10.1101/2020.03.12.989467.

  51. Panja, A. S., Bandopadhyay, B., & Maiti, S. (2015). Protein thermostability is owing to their preferences to non-polar smaller volume amino acids, variations in residual physico-chemical properties and more salt-bridges. PLoS One, 10(7), e0131495. https://doi.org/10.1371/journal.pone.0131495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nishi, H., Hashimoto, K., & Panchenko, A. R. (2011). Phosphorylation in protein-protein binding: effect on stability and function. Structure, 19(12), 1807–1815. https://doi.org/10.1016/j.str.2011.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Pradipta Saha, Department of Microbiology, University of Burdwan, for his help and support.

Author information

Authors and Affiliations

Authors

Contributions

D.M. conceived and designed the project. P.K.D.M. conducted initial manual verifications. Protein sequence and structure were identified by D.M. Analysis of those results was done by D.M. Draft of the manuscript was prepared by D.M. Final version of the manuscript was prepared by P.K.D.M. The whole work was done under the supervision of P.K.D.M.

Corresponding author

Correspondence to Pradeep K. Das Mohapatra.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, D., Das Mohapatra, P.K. Discovery of Novel Cyclic Salt Bridge in Thermophilic Bacterial Protease and Study of its Sequence and Structure. Appl Biochem Biotechnol 193, 1688–1700 (2021). https://doi.org/10.1007/s12010-021-03547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03547-3

Keywords

Navigation