Skip to main content

Advertisement

Log in

TETology: Epigenetic Mastermind in Action

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cytosine methylation is a well-explored epigenetic modification mediated by DNA methyltransferases (DNMTs) which are considered “methylation writers”; cytosine methylation is a reversible process. The process of removal of methyl groups from DNA remained unelucidated until the discovery of ten-eleven translocation (TET) proteins which are now considered “methylation editors.” TET proteins are a family of Fe(II) and alpha-ketoglutarate-dependent 5-methyl cytosine dioxygenases—they convert 5-methyl cytosine to 5-hydroxymethyl cytosine, and to further oxidized derivatives. In humans, there are three TET paralogs with tissue-specific expression, namely TET1, TET2, and TET3. Among the TETs, TET2 is highly expressed in hematopoietic stem cells where it plays a pleiotropic role. The paralogs also differ in their structure and DNA binding. TET2 lacks the CXXC domain which mediates DNA binding in the other paralogs; thus, TET2 requires interactions with other proteins containing DNA-binding domains for effectively binding to DNA to bring about the catalysis. In addition to its role as methylation editor of DNA, TET2 also serves as methylation editor of RNA. Thus, TET2 is involved in epigenetics as well as epitranscriptomics. TET2 mutations have been found in various malignant hematological disorders like acute myeloid leukemia, and non-malignant hematological disorders like myelodysplastic syndromes. Increasing evidence shows that TET2 plays an important role in the non-hematopoietic system as well. Hepatocellular carcinoma, gastric cancer, prostate cancer, and melanoma are some non-hematological malignancies in which a role of TET2 has been implicated. Loss of TET2 is also associated with atherosclerotic vascular lesions and endometriosis. The current review elaborates on the role of structure, catalysis, physiological functions, pathological alterations, and methods to study TET2, with specific emphasis on epigenomics and epitranscriptomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data and materials will be freely available.

References

  1. Prokhortchouk, E., & Defossez, P.-A. (2008). The cell biology of DNA methylation in mammals. Biochimica et Biophysica Acta, Molecular Cell Research, 1783(11), 2167–2173.

    Article  CAS  Google Scholar 

  2. Jeltsch, A., Ehrenhofer-Murray, A., Jurkowski, T. P., Lyko, F., Reuter, G., Ankri, S., et al. (2017). Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biology, 14(9), 1108–1123.

    Article  PubMed  Google Scholar 

  3. Shimbo, T., & Wade, P. A. (2016). Proteins that read dna methylation. Advances in Experimental Medicine and Biology, 945, 303–320.

    Article  CAS  PubMed  Google Scholar 

  4. Du, Q., Luu, P.-L., Stirzaker, C., & Clark, S. J. (2015). Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics., 7(6), 1051–1073.

    Article  CAS  PubMed  Google Scholar 

  5. Martín Caballero, I., Hansen, J., Leaford, D., Pollard, S., & Hendrich, B. D. (2009). The methyl-CpG binding proteins Mecp2, Mbd2 and Kaiso are dispensable for mouse embryogenesis, but play a redundant function in neural differentiation. PLoS One, 4(1), e4315.

  6. Vaughan, R. M., Dickson, B. M., Cornett, E. M., Harrison, J. S., Kuhlman, B., & Rothbart, S. B. (2018). Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance. Nucleic Acids Research, 46(9), 4405–4416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clouaire, T., & Stancheva, I. (2008). Methyl-CpG binding proteins: Specialized transcriptional repressors or structural components of chromatin? Cellular and Molecular Life Sciences: CMLS, 65(10), 1509–1522.

    Article  CAS  PubMed  Google Scholar 

  8. Ooi, S. K. T., & Bestor, T. H. (2008). The colorful history of active DNA demethylation. Cell., 133(7), 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  9. Ehrlich, M. (2009). DNA hypomethylation in cancer cells. Epigenomics., 1(2), 239–259.

    Article  CAS  PubMed  Google Scholar 

  10. Wu, S. C., & Zhang, Y. (2010). Active DNA demethylation: Many roads lead to Rome. Nature Reviews. Molecular Cell Biology, 11(9), 607–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science., 324(5929), 930–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lorsbach, R. B., Moore, J., Mathew, S., Raimondi, S. C., Mukatira, S. T., & Downing, J. R. (2003). TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia., 17(3), 637–641.

    Article  CAS  PubMed  Google Scholar 

  13. Pastor, W. A., Aravind, L., & Rao, A. (2013). TETonic shift: Biological roles of TET proteins in DNA demethylation and transcription. Nature Reviews. Molecular Cell Biology, 14(6), 341–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu, L., Li, Z., Cheng, J., Rao, Q., Gong, W., Liu, M., et al. (2013). Crystal structure of TET2-DNA complex: Insight into TET-mediated 5mC oxidation. Cell., 155(7), 1545–1555.

    Article  CAS  PubMed  Google Scholar 

  15. Bussaglia, E., Antón, R., Nomdedéu, J. F., & Fuentes-Prior, P. (2019). TET2 missense variants in human neoplasia. A proposal of structural and functional classification. Molecular Genetics & Genomic Medicine, 7(7), e00772.

    Article  Google Scholar 

  16. IntEnz - EC 1.14.11.n2 [Internet]. Available from: https://www.ebi.ac.uk/intenz/query?q=1.14.11.n2&submit=Search. Accessed 22 Oct 2019.

  17. Iyer, L. M., Tahiliani, M., Rao, A., & Aravind, L. (2009). Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle, 8(11), 1698–1710.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, M. Y., Torabifard, H., Crawford, D. J., DeNizio, J. E., Cao, X.-J., Garcia, B. A., et al. (2017). Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine. Nature Chemical Biology, 13(2), 181–187.

    Article  CAS  PubMed  Google Scholar 

  19. Borst, P., & Sabatini, R. (2008). Base J: Discovery, biosynthesis, and possible functions. Annual Review of Microbiology, 62(1), 235–251.

    Article  CAS  PubMed  Google Scholar 

  20. Wu, H., D’Alessio, A. C., Ito, S., Xia, K., Wang, Z., Cui, K., et al. (2011). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature., 473(7347), 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ko, M., An, J., Bandukwala, H. S., Chavez, L., Äijö, T., Pastor, W. A., et al. (2013). Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature., 497(7447), 122–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iyer, L. M., Abhiman, S., & Aravind, L. (2011). Chapter 2-Natural history of eukaryotic DNA methylation systems. In X. Cheng & R. M. Blumenthal (Eds.), Progress in molecular biology and translational science [Internet] (p. 25–104). Academic Press. (Modifications of Nuclear DNA and its Regulatory Proteins; vol. 101). Available from: http://www.sciencedirect.com/science/article/pii/B9780123876850000020. Accessed 27 Oct 2019.

  23. Davey, N. E. (2019). The functional importance of structure in unstructured protein regions. Current Opinion in Structural Biology, 56, 155–163.

    Article  CAS  PubMed  Google Scholar 

  24. Ravichandran, M., Lei, R., Tang, Q., Zhao, Y., Lee, J., Ma, L., et al. (2019). Rinf regulates pluripotency network genes and Tet enzymes in embryonic stem cells. Cell Reports, 28(8), 1993–2003.e5.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, L., Ren, M., Zeng, T., Wang, W., Wang, X., Hu, M., et al. (2019). TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter in diabetic wound healing. Cell Death & Disease, 10(11), 813.

    Article  Google Scholar 

  26. Delhommeau, F., Dupont, S., James, C., Masse, A., le Couedic, J. P., Valle, V. D., et al. (2008). TET2 is a novel tumor suppressor gene inactivated in myeloproliferative neoplasms: Identification of a pre-JAK2 V617F event. Blood, 112(11), lba-3-lba-3.

    Article  Google Scholar 

  27. Jankowska, A. M., Szpurka, H., Tiu, R. V., Makishima, H., Afable, M., Huh, J., et al. (2009). Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood., 113(25), 6403–6410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tefferi, A., Pardanani, A., Lim, K.-H., Abdel-Wahab, O., Lasho, T., Patel, J., et al. (2009). TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia., 23(5), 905–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdel-Wahab, O., Mullally, A., Hedvat, C., Garcia-Manero, G., Patel, J., Wadleigh, M., et al. (2009). Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood., 114(1), 144–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tefferi, A., Levine, R. L., Lim, K.-H., Abdel-Wahab, O., Lasho, T. L., Patel, J., et al. (2009). Frequent TET2 mutations in systemic mastocytosis: Clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia., 23(5), 900–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mullighan, C. G. (2009). TET2 mutations in myelodysplasia and myeloid malignancies. Nature Genetics, 41(7), 766–767.

    Article  CAS  PubMed  Google Scholar 

  32. Verma, N., Pan, H., Doré, L. C., Shukla, A., Li, Q. V., Pelham-Webb, B., et al. (2018). TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nature Genetics, 50(1), 83–95.

    Article  CAS  PubMed  Google Scholar 

  33. Koh, K. P., Yabuuchi, A., Rao, S., Huang, Y., Cunniff, K., Nardone, J., et al. (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2), 200–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature., 466(7310), 1129–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419. Data available from https://www.proteinatlas.org/ENSG00000168769-TET2. Accessed 22 Oct 2019.

  36. Ko, M., & Rao, A. (2011). TET2: Epigenetic safeguard for HSC. Blood., 118(17), 4501–4503.

    Article  CAS  PubMed  Google Scholar 

  37. Solary, E., Bernard, O. A., Tefferi, A., Fuks, F., & Vainchenker, W. (2014). The ten-eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia., 28(3), 485–496.

    Article  CAS  PubMed  Google Scholar 

  38. Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., et al. (2014). Age-related clonal hematopoiesis associated with adverse outcomes. The New England Journal of Medicine, 371(26), 2488–2498.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fuster, J. J., MacLauchlan, S., Zuriaga, M. A., Polackal, M. N., Ostriker, A. C., Chakraborty, R., et al. (2017). Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science, 355(6327), 842–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carrillo-Jimenez, A., Deniz, Ö., Niklison-Chirou, M. V., Ruiz, R., Bezerra-Salomão, K., Stratoulias, V., et al. (2019). TET2 regulates the neuroinflammatory response in microglia. Cell Reports, 29(3), 697–713.e8.

    Article  CAS  PubMed  Google Scholar 

  41. Cakouros, D., Hemming, S., Gronthos, K., Liu, R., Zannettino, A., Shi, S., et al. (2019). Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Epigenetics & Chromatin, 12(1), 3.

    Article  Google Scholar 

  42. Mi, Y., Gao, X., Dai, J., Ma, Y., Xu, L., & Jin, W. A. (2015). novel function of TET2 in CNS: Sustaining neuronal survival. International Journal of Molecular Sciences, 16(9), 21846–21857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yue, X., Lio, C.-W. J., Samaniego-Castruita, D., Li, X., & Rao, A. (2019). Loss of TET2 and TET3 in regulatory T cells unleashes effector function. Nature Communications, 10(1), 1–14.

    Article  Google Scholar 

  44. Hahn, M. A., Qiu, R., Wu, X., Li, A. X., Zhang, H., Wang, J., et al. (2013). Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Reports, 3(2), 291–300.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, R., Jin, Y., Tang, W. H., Qin, L., Zhang, X., Tellides, G., et al. (2013). Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation., 128(18), 2047–2057.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rasmussen, K. D., & Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes & Development, 30(7), 733–750.

    Article  CAS  Google Scholar 

  47. Globisch, D., Münzel, M., Müller, M., Michalakis, S., Wagner, M., Koch, S., et al. (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE, 5(12), e15367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S., & Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell., 151(7), 1417–1430.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Iurlaro, M., Ficz, G., Oxley, D., Raiber, E.-A., Bachman, M., Booth, M. J., et al. (2013). A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biology, 14(10), R119.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen, R., Zhang, Q., Duan, X., York, P., Chen, G.-D., Yin, P., et al. (2017). The 5-hydroxymethylcytosine (5hmC) reader UHRF2 is required for normal levels of 5hmC in mouse adult brain and spatial learning and memory. The Journal of Biological Chemistry, 292(11), 4533–4543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., et al. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science., 333(6047), 1300–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu, L., Lu, J., Cheng, J., Rao, Q., Li, Z., Hou, H., et al. (2015). Structural insight into substrate preference for TET-mediated oxidation. Nature., 527(7576), 118–122.

    Article  CAS  PubMed  Google Scholar 

  53. Spruijt, C. G., Gnerlich, F., Smits, A. H., Pfaffeneder, T., Jansen, P. W. T. C., Bauer, C., et al. (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell., 152(5), 1146–1159.

    Article  CAS  PubMed  Google Scholar 

  54. Bonev, B., & Cavalli, G. (2016). Organization and function of the 3D genome. Nature Reviews. Genetics, 17(11), 661–678.

    Article  CAS  PubMed  Google Scholar 

  55. Ong, C.-T., & Corces, V. G. (2014). CTCF: An architectural protein bridging genome topology and function. Nature Reviews. Genetics, 15(4), 234–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, T. H., Abdullaev, Z. K., Smith, A. D., Ching, K. A., Loukinov, D. I., Green, R. D., et al. (2007). Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell., 128(6), 1231–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marina, R. J., Sturgill, D., Bailly, M. A., Thenoz, M., Varma, G., Prigge, M. F., et al. (2016). TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing. The EMBO Journal, 35(3), 335–355.

    Article  CAS  PubMed  Google Scholar 

  58. Nanan, K. K., Sturgill, D. M., Prigge, M. F., Thenoz, M., Dillman, A. A., Mandler, M. D., et al. (2019). TET-catalyzed 5-carboxylcytosine promotes CTCF binding to suboptimal sequences genome-wide. iScience., 19, 326–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fujii, T., Khawaja, M. R., DiNardo, C. D., Atkins, J. T., & Janku, F. (2016). Targeting isocitrate dehydrogenase (IDH) in cancer. Discovery Medicine, 21(117), 373–380.

    PubMed  Google Scholar 

  60. Flavahan, W. A., Drier, Y., Liau, B. B., Gillespie, S. M., Venteicher, A. S., Stemmer-Rachamimov, A. O., et al. (2016). Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature., 529(7584), 110–114.

    Article  CAS  PubMed  Google Scholar 

  61. Ito, K., Lee, J., Chrysanthou, S., Zhao, Y., Josephs, K., Sato, H., et al. (2019). Non-catalytic roles of Tet2 are essential to regulate hematopoietic stem and progenitor cell homeostasis. Cell Reports, 28(10), 2480–2490.e4.

    Article  CAS  PubMed  Google Scholar 

  62. Montagner, S., Leoni, C., Emming, S., Della Chiara, G., Balestrieri, C., Barozzi, I., et al. (2016). TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities. Cell Reports, 15(7), 1566–1579.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Q., Zhao, K., Shen, Q., Han, Y., Gu, Y., Li, X., et al. (2015). Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature., 525(7569), 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, Q., Chen, Y., Bian, C., Fujiki, R., & Yu, X. (2013). TET2 promotes histone O-GlcNAcylation during gene transcription. Nature., 493(7433), 561–564.

    Article  CAS  PubMed  Google Scholar 

  65. Vella, P., Scelfo, A., Jammula, S., Chiacchiera, F., Williams, K., Cuomo, A., et al. (2013). Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Molecular Cell, 49(4), 645–656.

    Article  CAS  PubMed  Google Scholar 

  66. Montalbán-Loro, R., Lozano-Ureña, A., Ito, M., Krueger, C., Reik, W., Ferguson-Smith, A. C., et al. (2019). TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. Nature Communications, 10(1), 1–14.

    Article  Google Scholar 

  67. Mi, Y., Gao, X., Dai, J., Ma, Y., Xu, L., & Jin, W. A. (2015). novel function of TET2 in CNS: Sustaining neuronal survival. International Journal of Molecular Sciences, 16(9), 21846–21857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, Y., Wang, G., Liang, Z., Yang, Y., Cui, L., & Liu, C.-Y. (2016). Loss of nuclear localization of TET2 in colorectal cancer. Clinical Epigenetics, 8, 9. 

  69. Yan, H., Tan, L., Liu, Y., Huang, N., Cang, J., & Wang, H. (2020). Ten-eleven translocation methyl-cytosine dioxygenase 2 deficiency exacerbates renal ischemia-reperfusion injury. Clinical Epigenetics, 12(1), 98. 

  70. Li, R., Zhou, Y., Cao, Z., Liu, L., Wang, J., Chen, Z., et al. (2017). TET2 loss dysregulates the behavior of bone marrow mesenchymal stromal cells and accelerates Tet2−/−-driven myeloid malignancy progression. Stem Cell Reports, 10(1), 166–179.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chu, Y., Zhao, Z., Sant, D. W., Zhu, G., Greenblatt, S. M., Liu, L., et al. (2018). Tet2 regulates osteoclast differentiation by interacting with Runx1 and maintaining genomic 5-hydroxymethylcytosine (5hmC). Genomics, Proteomics & Bioinformatics, 16(3), 172–186.

    Article  Google Scholar 

  72. Kamdar, S., Isserlin, R., Van der Kwast, T., & Zlotta, R. A. (2019). Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression. Clinical Epigenetics, 11(1), 54.

  73. Wang H, Liu L, Gou M, Huang G, Tian C, Yang J, et al. (2020) Roles of Tet2 in meiosis, fertility and reproductive aging. Protein Cell [Internet]. [cited 2020 Dec 10]; Available from: https://doi.org/10.1007/s13238-020-00805-8.

  74. Nair, V. S., & Oh, K. I. (2014). Down-regulation of Tet2 prevents TSDR demethylation in IL2 deficient regulatory T cells. Biochemical and Biophysical Research Communications, 450(1), 918–924.

    Article  CAS  PubMed  Google Scholar 

  75. Wu, Y., Guo, Z., Liu, Y., Tang, B., Wang, Y., Yang, L., et al. (2013). Oct4 and the small molecule inhibitor, SC1, regulates Tet2 expression in mouse embryonic stem cells. Molecular Biology Reports, 40(4), 2897–2906.

    Article  CAS  PubMed  Google Scholar 

  76. Fischer, A. P., & Miles, S. L. (2017). Silencing HIF-1α induces TET2 expression and augments ascorbic acid induced 5-hydroxymethylation of DNA in human metastatic melanoma cells. Biochemical and Biophysical Research Communications, 490(2), 176–181.

    Article  CAS  PubMed  Google Scholar 

  77. Cheng, J., Guo, S., Chen, S., Mastriano, S. J., Liu, C., D’Alessio, A. C., et al. (2013). An Extensive Network of TET2-Targeting MicroRNAs Regulates Malignant Hematopoiesis. Cell Reports, 5(2), 471–481.

    Article  CAS  PubMed  Google Scholar 

  78. Ren, S., & Xu, Y. (2019). AC016405.3, a novel long noncoding RNA, acts as a tumor suppressor through modulation of TET2 by microRNA-19a-5p sponging in glioblastoma. Cancer Science, 110(5), 1621–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song, S. J., Ito, K., Ala, U., Kats, L., Webster, K., Sun, S. M., et al. (2013). The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell, 13(1), 87–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stefan-Lifshitz, M., Karakose, E., Cui, L., Ettela, A., Yi, Z., Zhang, W., et al. (2019). Epigenetic modulation of β cells by interferon-α via PNPT1/mir-26a/TET2 triggers autoimmune diabetes. JCI Insight., 4(5).

  81. Zhaolin, Z., Jiaojiao, C., Peng, W., Yami, L., Tingting, Z., Jun, T., et al. (2019). OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. Journal of Cellular Physiology, 234(5), 7475–7491.

    Article  PubMed  Google Scholar 

  82. Bauer, C., Göbel, K., Nagaraj, N., Colantuoni, C., Wang, M., Müller, U., et al. (2015). Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT). The Journal of Biological Chemistry, 290(8), 4801–4812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, H., Yu, D., Fang, R., Rabidou, K., Wu, D., Hu, D., et al. (2019). TET2 stabilization by 14-3-3 binding to the phosphorylated Serine 99 is deregulated by mutations in cancer. Cell Research, 29(3), 248–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu, D., Hu, D., Chen, H., Shi, G., Fetahu, I. S., Wu, F., et al. (2018). Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature., 559(7715), 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, T., Guan, X., Choi, U. L., Dong, Q., Lam, M. M. T., Zeng, J., et al. (2019). Phosphorylation of TET2 by AMPK is indispensable in myogenic differentiation. Epigenetics & Chromatin, 12(1), 32.

    Article  CAS  Google Scholar 

  86. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 30(2), 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews. Molecular Cell Biology, 13(4), 251–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jeong, J. J., Gu, X., Nie, J., Sundaravel, S., Liu, H., Kuo, W.-L., et al. (2019). Cytokine-regulated phosphorylation and activation of TET2 by JAK2 in hematopoiesis. Cancer Discovery, 9(6), 778–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Swamy, M., Pathak, S., Grzes, K. M., Damerow, S., Sinclair, L. V., van Aalten, D. M. F., et al. (2016). Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nature Immunology, 17(6), 712–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ramanathan, H. N., & Ye, Y. (2012). Cellular strategies for making monoubiquitin signals. Critical Reviews in Biochemistry and Molecular Biology, 47(1), 17–28.

    Article  CAS  PubMed  Google Scholar 

  91. Nakagawa, T., Lv, L., Nakagawa, M., Yu, Y., Yu, C., D’Alessio, A. C., et al. (2015). CRL4VprBP E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases. Molecular Cell, 57(2), 247–260.

    Article  CAS  PubMed  Google Scholar 

  92. Kosmider, O., Gelsi-Boyer, V., Cheok, M., Grabar, S., Della-Valle, V., Picard, F., et al. (2009). TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood., 114(15), 3285–3291.

    Article  CAS  PubMed  Google Scholar 

  93. Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Massé, A., et al. (2009). Mutation in TET2 in myeloid cancers. The New England Journal of Medicine, 360(22), 2289–2301.

    Article  PubMed  Google Scholar 

  94. Zhang, Y. W., Wang, Z., Xie, W., Cai, Y., Xia, L., Easwaran, H., et al. (2017). Acetylation enhances TET2 function in protecting against abnormal DNA methylation during oxidative stress. Molecular Cell, 65(2), 323–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yin, R., Mao, S.-Q., Zhao, B., Chong, Z., Yang, Y., Zhao, C., et al. (2013). Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. Journal of the American Chemical Society, 135(28), 10396–10403.

    Article  CAS  PubMed  Google Scholar 

  96. Unruh, D., Zewde, M., Buss, A., Drumm, M. R., Tran, A. N., Scholtens, D. M., et al. (2019). Methylation and transcription patterns are distinct in IDH mutant gliomas compared to other IDH mutant cancers. Scientific Reports, 9(1), 8946.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Figueroa, M. E., Abdel-Wahab, O., Lu, C., Ward, P. S., Patel, J., Shih, A., et al. (2010). Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell, 18(6), 553–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.-H., et al. (2011). Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 19(1), 17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ward, P. S., Cross, J. R., Lu, C., Weigert, O., Abel-Wahab, O., Levine, R. L., et al. (2012). Identification of additional IDH mutations associated with oncometabolite R (−)-2-hydroxyglutarate production. Oncogene., 31(19), 2491–2498.

    Article  CAS  PubMed  Google Scholar 

  100. Guan, Y., Tiwari, A. D., Phillips, J. G., Hasipek, M., Grabowski, D., Kerr, C. M., et al. (2019). TET dioxygenase inhibition as a therapeutic strategy in TET2 mutant myeloid neoplasia. Blood., 134(Supplement_1), 880–880.

    Article  Google Scholar 

  101. Itzykson, R., Kosmider, O., Renneville, A., Morabito, M., Berthon, C., Ades, L., et al. (2012). Comprehensive genetic screening of chronic myelomonocytic leukemias (CMML). Blood., 120(21), 3811–3811.

    Article  Google Scholar 

  102. Kao, H.-W., Kuo, M.-C., Wang, P.-N., Wu, J.-H., Lin, T.-H., Shih, Y.-S., et al. (2015). Clonal evolution of gene mutations involving DNA methylation in the progression of CMML to secondary AML. Blood., 126(23), 4120–4120.

    Article  Google Scholar 

  103. Kosmider, O., LaRochelle, O., Coude, M.-M., Mas, V. M.-D., Delabesse, E., Cornillet-Lefebvre, P., et al. (2011). IDH1/2, TET2 and DNMT3A mutations are not mutually exclusive in secondary acute myeloid leukemias. Blood., 118(21), 3556–3556.

    Article  Google Scholar 

  104. Chang, J., Xie, M., Shah, V. R., Schneider, M. D., Entman, M. L., Wei, L., et al. (2006). Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proceedings of the National Academy of Sciences, 103(39), 14495–14500.

    Article  CAS  Google Scholar 

  105. Chen, J., Wu, Y., Zhang, L., Fang, X., & Hu, X. (2019). Evidence for calpains in cancer metastasis. Journal of Cellular Physiology, 234(6), 8233–8240.

    Article  CAS  PubMed  Google Scholar 

  106. Wang, Y., & Zhang, Y. (2014). Regulation of TET protein stability by calpains. Cell Reports, 6(2), 278–284.

    Article  PubMed  Google Scholar 

  107. Sardina, J. L., Collombet, S., Tian, T. V., Gómez, A., Di Stefano, B., Berenguer, C., et al. (2018). Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate. Cell Stem Cell, 23(5), 727–741.e9.

    Article  CAS  PubMed  Google Scholar 

  108. Guilhamon, P., Eskandarpour, M., Halai, D., Wilson, G. A., Feber, A., Teschendorff, A. E., et al. (2013). Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nature Communications, 4, 2166.

    Article  PubMed  Google Scholar 

  109. Wang, Y., Xiao, M., Chen, X., Chen, L., Xu, Y., Lv, L., et al. (2015). WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Molecular Cell, 57(4), 662–673.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yamamoto, M., Yamazaki, S., Uematsu, S., Sato, S., Hemmi, H., Hoshino, K., et al. (2004). Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature., 430(6996), 218–222.

    Article  CAS  PubMed  Google Scholar 

  111. Treiber, T., Mandel, E. M., Pott, S., Györy, I., Firner, S., Liu, E. T., et al. (2010). Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription-independent poising of chromatin. Immunity., 32(5), 714–725.

    Article  CAS  PubMed  Google Scholar 

  112. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613.

    Article  CAS  PubMed  Google Scholar 

  113. Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., et al. (2010). The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research, 38(Web Server issue), W214–W220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Weissmann, S., Alpermann, T., Grossmann, V., Kowarsch, A., Nadarajah, N., Eder, C., et al. (2012). Landscape of TET2 mutations in acute myeloid leukemia. Leukemia., 26(5), 934–942.

    Article  CAS  PubMed  Google Scholar 

  115. Ko, M., Huang, Y., Jankowska, A. M., Pape, U. J., Tahiliani, M., Bandukwala, H. S., et al. (2010). Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature., 468(7325), 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Musialik, E., Bujko, M., Wypych, A., Matysiak, M., & Siedlecki, J. A. (2014). TET2 promoter DNA methylation and expression analysis in pediatric B-cell acute lymphoblastic leukemia. Hematology Reports, 6(1), 5333.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Roche-Lestienne, C., Alice, M., Labis, E., Nibourel, O., Coiteux, V., Guilhot, J., et al. (2010). Mutations of TET2, IDH1, IDH2 and ASXL1 in chronic myeloid leukemia. Blood., 116(21), 3377–3377.

    Article  Google Scholar 

  118. Song, F., Amos, C. I., Lee, J. E., Lian, C. G., Fang, S., Liu, H., et al. (2014). Identification of a melanoma susceptibility locus and somatic mutation in TET2. Carcinogenesis., 35(9), 2097–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nickerson, M. L., Das, S., Im, K. M., Turan, S., Berndt, S. I., Li, H., et al. (2017). TET2 binds the androgen receptor and Loss is associated with prostate cancer. Oncogene., 36(15), 2172–2183.

    Article  CAS  PubMed  Google Scholar 

  120. Itoh, H., Kadomatsu, T., Tanoue, H., Yugami, M., Miyata, K., Endo, M., et al. (2018). TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene., 37(22), 2903–2920.

    Article  CAS  PubMed  Google Scholar 

  121. Sajadian, S. O., Ehnert, S., Vakilian, H., Koutsouraki, E., Damm, G., Seehofer, D., et al. (2015). Induction of active demethylation and 5hmC formation by 5-azacytidine is TET2 dependent and suggests new treatment strategies against hepatocellular carcinoma. Clinical Epigenetics, 7, 98.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhou, K., Guo, H., Zhang, J., Zhao, D., Zhou, Y., Zheng, Z., et al. (2019). Potential role of TET2 in gastric cancer cisplatin resistance. Pathology, Research and Practice, 215(11), 152637.

    Article  CAS  PubMed  Google Scholar 

  123. Schoeler, K., Aufschnaiter, A., Messner, S., Derudder, E., Herzog, S., Villunger, A., et al. (2019). TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells. The FEBS Journal, 286(18), 3566–3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dominguez, P. M., Ghamlouch, H., Rosikiewicz, W., Kumar, P., Béguelin, W., Fontán, L., et al. (2018). TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis. Cancer Discovery, 8(12), 1632–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao, Z., Chen, L., Dawlaty, M. M., Pan, F., Weeks, O., Zhou, Y., et al. (2015). Combined loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice. Cell Reports, 13(8), 1692–1704.

    Article  CAS  PubMed  Google Scholar 

  126. Tanaka, S., Ise, W., Inoue, T., Ito, A., Ono, C., Shima, Y., et al. (2020). Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity. Nature Immunology, 21(8), 950–961.

    Article  CAS  PubMed  Google Scholar 

  127. Kamdar, S., Isserlin, R., Van der Kwast, T., Zlotta, A. R., Bader, G. D., Fleshner, N. E., et al. (2019). Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression. Clinical Epigenetics, 11(1), 54.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Xu, Y.-P., Lv, L., Liu, Y., Smith, M. D., Li, W.-C., Tan, X.-M., et al. (2019). Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. The Journal of Clinical Investigation, 130, 4316–4331.

    Article  Google Scholar 

  129. Bonvin, E., Radaelli, E., Bizet, M., Luciani, F., Calonne, E., Putmans, P., et al. (2019). TET2-dependent hydroxymethylome plasticity reduces melanoma initiation and progression. Cancer Research, 79(3), 482–494.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, L.-Y., Li, P.-L., Wang, T.-Z., & Zhang, X.-C. (2015). Prognostic values of 5-hmC, 5-mC and TET2 in epithelial ovarian cancer. Archives of Gynecology and Obstetrics, 292(4), 891–897.

    Article  CAS  PubMed  Google Scholar 

  131. Peng, J., Yang, Q., Li, A.-F., Li, R.-Q., Wang, Z., Liu, L.-S., et al. (2016). Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE-/- mice. Oncotarget, 7(47), 76423–76436.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lee, M., Bryan, K., Peipei, L., Elizabeth, E., Katie, L., Wei, C., et al. (2019). Epigenomic analysis of Parkinson’s disease neurons identifies Tet2 loss as neuroprotective. bioRxiv, 779785.

  133. Roca, F. J., Loomans, H. A., Wittman, A. T., Creighton, C. J., & Hawkins, S. M. (2016). Ten-eleven translocation genes are downregulated in endometriosis. Current Molecular Medicine, 16(3), 288–298.

    Article  CAS  PubMed  Google Scholar 

  134. Ichiyama, K., Chen, T., Wang, X., Yan, X., Kim, B.-S., Tanaka, S., et al. (2015). The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity., 42(4), 613–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yue, X., Lio, C.-W. J., Samaniego-Castruita, D., Li, X., & Rao, A. (2019). Loss of TET2 and TET3 in regulatory T cells unleashes effector function. Nature Communications, 10(1), 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Braun, T., & Fenaux, P. (2013). Myelodysplastic syndromes (MDS) and autoimmune disorders (AD): Cause or consequence? Best Practice & Research. Clinical Haematology, 26(4), 327–336.

    Article  CAS  Google Scholar 

  137. Komrokji, R. S., Kulasekararaj, A., Al Ali, N. H., Kordasti, S., Bart-Smith, E., Craig, B. M., et al. (2016). Autoimmune diseases and myelodysplastic syndromes. American Journal of Hematology, 91(5), E280–E283.

    Article  PubMed  Google Scholar 

  138. Oh, Y.-J., Shin, D.-Y., Hwang, S. M., Kim, S.-M., Im, K., Park, H. S., et al. (2020). Mutation of ten-eleven translocation-2 is associated with increased risk of autoimmune disease in patients with myelodysplastic syndrome. The Korean Journal of Internal Medicine, 35(2), 457–464.

    Article  CAS  PubMed  Google Scholar 

  139. de Andres, M. C., Perez-Pampin, E., Calaza, M., Santaclara, F. J., Ortea, I., Gomez-Reino, J. J., et al. (2015). Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Research & Therapy, 17, 233.

    Article  Google Scholar 

  140. Li, X., Xiong, X., & Yi, C. (2017). Epitranscriptome sequencing technologies: Decoding RNA modifications. Nature Methods, 14(1), 23–31.

    Article  CAS  Google Scholar 

  141. Huber, S. M., van Delft, P., Mendil, L., Bachman, M., Smollett, K., Werner, F., et al. (2015). Formation and abundance of 5-hydroxymethylcytosine in RNA. Chembiochem., 16(5), 752–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., et al. (2012). Widespread occurrence of 5-methylcytosine in human coding and noncoding RNA. Nucleic Acids Research, 40(11), 5023–5033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Basanta-Sanchez, M., Wang, R., Liu, Z., Ye, X., Li, M., Shi, X., et al. (2017). TET1-mediated oxidation of 5-formylcytosine (5fC) to 5-carboxycytosine (5caC) in RNA. Chembiochem : a European journal of chemical biology, 18(1), 72–76.

    Article  CAS  PubMed  Google Scholar 

  144. Yang, X., Yang, Y., Sun, B.-F., Chen, Y.-S., Xu, J.-W., Lai, W.-Y., et al. (2017). 5-methylcytosine promotes mRNA export-NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Research, 27(5), 606–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Amort, T., Rieder, D., Wille, A., Khokhlova-Cubberley, D., Riml, C., Trixl, L., et al. (2017). Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biology, 18(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Amort, T., Soulière, M. F., Wille, A., Jia, X.-Y., Fiegl, H., Wörle, H., et al. (2013). Long noncoding RNAs as targets for cytosine methylation. RNA Biology, 10(6), 1002–1008.

    Article  CAS  PubMed Central  Google Scholar 

  147. Amort, M., Nachbauer, B., Tuzlak, S., Kieser, A., Schepers, A., Villunger, A., et al. (2015). Expression of the vault RNA protects cells from undergoing apoptosis. Nature Communications, 6, 7030.

    Article  CAS  PubMed  Google Scholar 

  148. Hussain, S., Sajini, A. A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., et al. (2013). NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Reports, 4(2), 255–261.

    Article  CAS  PubMed  Google Scholar 

  149. Persson, H., Kvist, A., Vallon-Christersson, J., Medstrand, P., Borg, A., & Rovira, C. (2009). The noncoding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nature Cell Biology, 11(10), 1268–1271.

    Article  CAS  PubMed  Google Scholar 

  150. Sajini, A. A., Choudhury, N. R., Wagner, R. E., Bornelöv, S., Selmi, T., Spanos, C., et al. (2019). Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun., 10(1), 11, 2550.

  151. Zhou, Z., Luo, M., Straesser, K., Katahira, J., Hurt, E., & Reed, R. (2000). The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature., 407(6802), 401–405.

    Article  CAS  PubMed  Google Scholar 

  152. Fu, L., Guerrero, C. R., Zhong, N., Amato, N. J., Liu, Y., Liu, S., et al. (2014). Tet-mediated formation of 5-hydroxymethylcytosine in RNA. Journal of the American Chemical Society, 136(33), 11582–11585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Delatte, B., Wang, F., Ngoc, L. V., Collignon, E., Bonvin, E., Deplus, R., et al. (2016). Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science., 351(6270), 282–285.

    Article  CAS  PubMed  Google Scholar 

  154. DeNizio, J. E., Liu, M. Y., Leddin, E. M., Cisneros, G. A., & Kohli, R. M. (2019). Selectivity and promiscuity in TET-mediated oxidation of 5-methylcytosine in DNA and RNA. Biochemistry., 58(5), 411–421.

    Article  CAS  PubMed  Google Scholar 

  155. Leddin, E. M., & Cisneros, G. A. (2019). Comparison of DNA and RNA substrate effects on TET2 structure. Advances in Protein Chemistry and Structural Biology, 117, 91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Haag, S., Sloan, K. E., Ranjan, N., Warda, A. S., Kretschmer, J., Blessing, C., et al. (2016). NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. The EMBO Journal, 35(19), 2104–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kawarada, L., Suzuki, T., Ohira, T., Hirata, S., Miyauchi, K., & Suzuki, T. (2017). ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Research, 45(12), 7401–7415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huber, S. M., van Delft, P., Tanpure, A., Miska, E. A., & Balasubramanian, S. (2017). 2′-O-Methyl-5-hydroxymethylcytidine: A second oxidative derivative of 5-methylcytidine in RNA. Journal of the American Chemical Society, 139(5), 1766–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, Y.-F., Qi, C.-B., Yuan, B.-F., & Feng, Y.-Q. (2019). Determination of cytidine modifications in human urine by liquid chromatography-mass spectrometry analysis. Analytica Chimica Acta, 1081, 103–111.

    Article  CAS  PubMed  Google Scholar 

  160. Gaj, T., Sirk, S. J., Shui, S.-L., & Liu, J. (2016). Genome-editing technologies: Principles and applications. Cold Spring Harbor Perspectives in Biology, 8(12).

  161. Sano, S., Oshima, K., Wang, Y., Katanasaka, Y., Sano, M., & Walsh, K. (2018). CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circulation Research, 123(3), 335–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yu, M., Han, D., Hon, G. C., & He, C. (2018). Tet-assisted bisulfite sequencing (TAB-seq). Methods in Molecular Biology, Clifton NJ., 1708, 645–663.

    Article  CAS  Google Scholar 

  163. Yu, M., Hon, G. C., Szulwach, K. E., Song, C.-X., Jin, P., Ren, B., et al. (2012). Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nature Protocols, 7(12), 2159–2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yu, M., Hon, G. C., Szulwach, K. E., Song, C.-X., Zhang, L., Kim, A., et al. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell., 149(6), 1368–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Skvortsova, K., Zotenko, E., Luu, P.-L., Gould, C. M., Nair, S. S., Clark, S. J., et al. (2017). Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenetics & Chromatin, 10(1), 16.

    Article  Google Scholar 

  166. Jin, S.-G., Kadam, S., & Pfeifer, G. P. (2010). Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Research, 38(11), e125.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Booth, M. J., Branco, M. R., Ficz, G., Oxley, D., Krueger, F., Reik, W., et al. (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science., 336(6083), 934–937.

    Article  CAS  PubMed  Google Scholar 

  168. Song, C.-X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C., Li, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 29(1), 68–72.

    Article  CAS  PubMed  Google Scholar 

  169. Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie (International Ed. in English), 41(14), 2596–2599.

    Article  CAS  Google Scholar 

  170. Nestor, C. E., & Meehan, R. R. (2014). Hydroxymethylated DNA immunoprecipitation (hmeDIP). Methods in Molecular Biology, Clifton NJ., 1094, 259–267.

    Article  CAS  Google Scholar 

  171. Shenoy, N., Bhagat, T., Nieves, E., Stenson, M., Lawson, J., Choudhary, G. S., et al. (2017). Upregulation of TET activity with ascorbic acid induces epigenetic modulation of lymphoma cells. Blood Cancer Journal, 7(7), e587–e587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Davis, T., & Vaisvila, R. (2011). High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue. Journal of Visualized Experiments, 48.

  173. Zahid, O. K., Zhao, B. S., He, C., & Hall, A. R. (2016). Quantifying mammalian genomic DNA hydroxymethylcytosine content using solid-state nanopores. Scientific Reports, 6, 29565.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Song, C.-X., Clark, T. A., Lu, X.-Y., Kislyuk, A., Dai, Q., Turner, S. W., et al. (2011). Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nature Methods, 9(1), 75–77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to the Department of Biochemistry, All India Institute of Medical Science, New Delhi, for providing logistics and space.

Funding

SK received funding from AIIMS - New Delhi, and SERB - Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

AS and KP drafted the manuscript. IC and RS assisted in writing. AC helped in the critical discussion of the manuscript. RD and SK shared the idea and oversaw the whole work.

Corresponding authors

Correspondence to Ruby Dhar or Subhradip Karmakar.

Ethics declarations

Ethical Approval

Ethical approval is not required since this is a review article.

Consent to Participate

N/A as no human subjects were enrolled in this study.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seethy, A., Pethusamy, K., Chattopadhyay, I. et al. TETology: Epigenetic Mastermind in Action. Appl Biochem Biotechnol 193, 1701–1726 (2021). https://doi.org/10.1007/s12010-021-03537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03537-5

Keywords

Navigation