Skip to main content
Log in

Antibiofilm Activity of α-Amylase from Bacillus subtilis and Prediction of the Optimized Conditions for Biofilm Removal by Response Surface Methodology (RSM) and Artificial Neural Network (ANN)

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

α-amylase is known to have antibiofilm activity against biofilms of both Gram positive and Gram-negative bacterial strains. Partially purified α-amylase from Bacillus subtilis was found to have inhibit biofilm formed by P. aeruginosa and S. aureus. The spectrophotometric and microscopic studies revealed that the antibiofilm efficacy of the working strain is greater than commercially purchased α-amylase. Response surface methodology (RSM) and artificial neural network (ANN) help to predict the optimum conditions [pH 8, treatment time 6 h and enzyme concentration (200 µg/mL)] for maximum biofilm eradication. This was confirmed by several in vitro experiments. Molecular docking interactions of α-amylase with the extracellular polymeric substances (EPS) of both P. aeruginosa and S. aureus indicate towards the existence of an efficient energy driven spontaneous process. Thus, this study highlights a combination of experimental and computational approach showing the naturally extracted α-amylase from B. subtilis having the potency of removing the biofilms of harmful bacterial strains involved in causing various nosocomial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the nature environment to infectious diseases. Nature Reviews Microbiology, 2, 95–108.

    Article  CAS  Google Scholar 

  2. Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192.

    Article  Google Scholar 

  3. Otto, M. (2008). Staphylococcal biofilms. Current topics in microbiology and immunology, 322, 207–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, W., Jin, Y., Bai, F., & Jin, S. (2015). Pseudomonas aeruginosa. Molecular Medical Microbiology, 753–767.

  5. Vu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules (Basel, Switzerland), 14(7), 2535–2554.

    Article  CAS  Google Scholar 

  6. Kaplan, J. B., Mlynek, K. D., Hettiarachchi, H., Alamneh, Y. A., Biggemann, L., Zurawski, D. V., et al. (2018). Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS ONE, 13(10), e0205526.

    Article  Google Scholar 

  7. Franklin, M. J., Nivens, D. E., Weadge, J. T., & Howell, P. L. (2011). Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol, 2, 167.

    Article  Google Scholar 

  8. de Carvalho, C. C. C. C. R. (2007). Biofilms: Recent developments on an old battle. Recent Patents on Biotechnology, 1, 49–57.

    Article  Google Scholar 

  9. Zhang, T., Ke, S. Z., Liu, Y., & Fang, H. P. (2005). Microbial characteristics of a methanogenic phenoldegrading sludge. Water Science Technology, 52, 73–78.

    Article  CAS  Google Scholar 

  10. Wai, S. N., Mizunoe, Y., Takade, A., Kawabata, S. I., & Yoshida, S. I. (1998). Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Applied and Environmental Microbiology, 64, 3648–3655.

    Article  CAS  Google Scholar 

  11. Yildiz, F. H., & Schoolnik, G. K. (1999). Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proceedings of the National Academy of Sciences (USA), 96, 4028–4033.

    Article  CAS  Google Scholar 

  12. Allison, D. G., McBain, A., & Gilbert, P. (2000). Biofilms: Problems of their control—Community and cooperation in biofilms (pp. 309–327). Cambridge: Cambridge University Press. Society for General Microbiology.

    Google Scholar 

  13. Lequette, Y., Boelsb, G., Clarissea, M., & Faille, C. (2010). Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling, 26, 421–431.

    Article  CAS  Google Scholar 

  14. Lahiri, D., Nag, M., Dutta, B., Dash, S., Ghosh, S., Ray, R. (2021). Synergistic Effect of Quercetin with Allicin from the Ethanolic Extract of Allium cepa as a Potent AntiQuorum Sensing and Anti-Biofilm Agent Against Oral Biofilm. In: Ramkrishna D., Sengupta S., Dey Bandyopadhyay S., Ghosh A. (eds) Advances in Bioprocess Engineering and Technology. Lecture Notes in Bioengineering. Singapore: Springer.

  15. Bano, S., Ul Qader, S. A., Aman, A., Syed, M. N., Azhar, A. (2011). Purification and characterization of novel α-amylase from Bacillus subtilis KIBGE HAS. AAPS PharmSciTech, 12(1):255–61.

  16. This Bernfeld P.Week’s Amylases, a and /3.Citation Met/i. Enzymology 1:149–58, Classic®________ 1955. CC/NUMBER 401 Tufts University School of Medicine. Boston.

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin–phenol reagents. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  Google Scholar 

  18. Singh, R., Kumar, V.,& Kapoor, V. (2014). Partial Purification and Characterization of a Heat Stable α-Amylase from a Thermophilic Actinobacteria, Streptomyces sp. MSC702 Enzyme Research 2014 Article ID 106363. https://doi.org/10.1155/2014/106363

  19. Abdulaal, W. H. (2018). Purification and characterization of α-amylase from Trichoderma pseudokoningii. BMC Biochem, 14;19(1):4.

  20. Ghosh, B. and Ray, R. R. (2010). Characterization Of Raw Starch Digesting And Adsorbing Extra Cellular Isoamylase from Rhizopus oryzae. Recent Research in Science and Technology, 2(3): 64–70.

  21. Thenmozhi, R., Nithyanand, P., Rathna, J., & Pandian, S. K. (2009). Antibiofilm activity of coralassociated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunology and Medical Microbiology, 57, 284–294.

    Article  CAS  Google Scholar 

  22. Augustine, S. K., Bhavsar, S. P., & Kapadnis, B. P. (2005). A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23. Journal of Biosciences, 30, 201–211.

    Article  CAS  Google Scholar 

  23. Kalpana, B. J., Aarthy, S., & Pandian, S. K. (2012). Antibiofilm activity of α-amylase from Bacillus subtilis S8–18 against biofilm forming human bacterial pathogens. Applied Biochemistry and Biotechnology, 167(6), 1778–1794.

    Article  CAS  Google Scholar 

  24. Nithya, C., Begum, M. F., & Pandian, S. K. (2010). Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Applied Microbiology and Biotechnology, 88, 341–358.

    Article  CAS  Google Scholar 

  25. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  26. Sarkar, T., Salauddin, M., Hazra, S. K., & Chakraborty, R. (2020). Comparative study of predictability of response surface methodology (RSM) and artificial neural network-particle swarm optimization (ANN-PSO) for total colour difference of pineapple fortified rasgulla processing. International Journal of Intelligent Networks, 1, 17–31.

    Article  Google Scholar 

  27. Ebrahimpour, A., Rahman R. N. Z. R. A., Ch’ng, D. H. E., Basri, M., Salleh, A. B. (2008). A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnol, 8 (1) 96. https://doi.org/10.1186/1472-6750-8-96.

  28. Simair, A. A., Qureshi, A. S., Khushk, I., Ali, C. H., Lashari, S., Bhutto, M. A., Mangrio, G. S., & Lu, C. (2017). Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01–50 and Potential Applications. BioMed research international, 2017, 9173040

  29. Nair, H. P., Vincent, H., Puthusseri, R. M., & Bhat, S. G. (2017). Molecular cloning and characterization of a halotolerant α-amylase from marine metagenomic library derived from Arabian Sea sediments. 3 Biotech, 7(1), 65

  30. Craigen, B., Dashiff, A., & Kadouri, D. E. (2011). The Use of Commercially Available Alpha-Amylase Compounds to Inhibit and Remove Staphylococcus aureus Biofilms. The open microbiology journal, 5, 21–31.

    Article  Google Scholar 

  31. Watters, C. M., Burton, T., Kirui, D. K., & Millenbaugh, N. J. (2016). Enzymatic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma. Infection and drug resistance, 9, 71–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sivapathasekaran, C., & Sen, R. (2013). Performance evaluation of an ANN-GA aided experimental modeling and optimization procedure for enhanced synthesis of marine bio surfactant in a stirred tank reactor. Journal of Chemical Technology and Biotechnology, 88, 794–799.

    Article  CAS  Google Scholar 

  33. Leroy, C., Delbarrea, C., Ghillebaertb, F., Comperec, C., & Combes, D. (2008). Effects of commercial enzymes on the adhesion of a marine biofilm forming bacterium. Biofouling, 24, 11–22.

    Article  CAS  Google Scholar 

  34. Orgaz, B., Kives, J., Pedregosa, A. M., Monistrol, I. F., Laborda, F., & SanJose, C. (2006). Bacterial biofilm removal using fungal enzymes. Enzyme and Microbial Technology, 40, 51–56.

    Article  CAS  Google Scholar 

  35. Meza Menchaca, T., Juárez-Portilla, C., Zepeda, C., & R. . (2020). Past, Present, and Future of Molecular Docking. Drug Discovery and Development - New Advances. https://doi.org/10.5772/intechopen.90921.

    Article  Google Scholar 

  36. Johansen, C., Falholt, P., & Gram, L. (1997). Enzymatic removal and disinfection of bacterial biofilms. Applied and Environmental Microbiology, 63, 3724–3728.

    Article  CAS  Google Scholar 

Download references

Funding

No funding of any kind has been received for the present work. Data have been generated as part of the routine work.

Author information

Authors and Affiliations

Authors

Contributions

Dibyajit Lahiri, isolated the bacterial strain and carried out other experimental procedures, helped to write the manuscript.

Moupriya Nag, conceived the study, revised experimental procedures and helped to write the manuscript.

Tanmay Sarkar, did the RSM and ANN prediction and analysis.

Bandita Dutta, carried out in-silico studies.

Rina Rani Ray, designed the protocol, supervised the experimental procedures and drafted the manuscript.

Corresponding author

Correspondence to Rina Rani Ray.

Ethics declarations

Competing Interests

The authors don’t have any conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

All authors have their consent to participate.

Consent to Publish

All authors have their consent to publish their work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dibyajit Lahiri and Moupriya Nag contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, D., Nag, M., Sarkar, T. et al. Antibiofilm Activity of α-Amylase from Bacillus subtilis and Prediction of the Optimized Conditions for Biofilm Removal by Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Appl Biochem Biotechnol 193, 1853–1872 (2021). https://doi.org/10.1007/s12010-021-03509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03509-9

Keywords

Navigation