Skip to main content
Log in

Algal Lysis by Sagittula stellata for the Production of Intracellular Valuables

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the efficacy of the algicidal bacterium Sagittula stellata on the cell lysis of Nannochloropsis oceanica, a microalga found in the marine environment, in order to extract intracellular valuables. Algicidal bacteria are capable of lysing algal cell walls while keeping lipids and proteins intact yet separated. We obtained these microbes from locations with consistent algae blooms and found that the bacterium Sagittula stellata displayed significant algicidal properties toward Nannochloropsis oceanica, achieving an algicidal rate of 80.1%. We detected a decrease of 66.2% in in vivo fluorescence intensity in algae cultures, obtained a recoverable crude lipid content of 23.3% and a polyunsaturated fatty acid (PUFA) ratio of 29.0% of bacteria-treated algae, and observed the lysis of the cell membrane and the structure of the nucleus of algae. We also identified the inhibited transcription of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (rbcS) gene and proliferating cell nuclear antigen (PCNA)–related genes and the upregulated heat shock protein (hsp) gene in algal cells during bacterial exposure. Our results indicate that Sagittula stellata effectively lysed microalgae cells, allowing the recovery of intracellular valuables. The algicidal method of Sagittula stellata on Nannochloropsis oceanica cells was confirmed to be a direct attack (or predation), followed by an indirect attack through the secretion of extracellular algicidal compounds. This study provides an important framework for the broad application of algicidal microorganisms in algal cell disruption and the production of intracellular valuables.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 A, B
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data sets supporting the results of this article are included within the article.

Abbreviations

ARA:

Arachidonic acid

BS:

Bacterial supernatant

CAFD:

Chlorophyll a fluorescence intensity

CFU:

Colony-forming units

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FAMEs:

Fatty acid methyl esters

GC:

Gas chromatography

hsp :

Heat shock protein

MMBM:

Modified Marine Broth 2216 medium

MUFAs:

Monounsaturated fatty acids

N. oceanica :

Nannochloropsis oceanica

PUFAs:

Polyunsaturated fatty acids

PCNA:

Proliferating cell nuclear antigen

rbc :

S: Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit

S. stellata :

Sagittula stellata

SFAs:

Saturated fatty acids

TEM:

Transmission electron microscopy

References

  1. Manage, P. M., Kawabata, Z., & Nakano, S. (2000). Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystisspp. Aquatic Microbial Ecology, 22, 111–117.

    Article  Google Scholar 

  2. Natrah, F. M. I., Bossier, P., Sorgeloos, P., Yusoff, F. M., Defoirdt, T. (2014). Significance of microalgal–bacterial interactions for aquaculture. Reviews in Aquaculture, 648–661.

  3. Zohdi, E., & Abbaspour, M. (2019). Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. International Journal of Environmental Sciences, 16(3), 1789–1806.

    Google Scholar 

  4. Roth, P. B., Twiner, M. J., Mikulski, C. M., Barnhorst, A. B., & Doucette, G. J. (2008). Comparative analysis of two algicidal bacteria active against the red tide dinoflagellate Karenia brevis. Harmful Algae, 7, 682–691.

    Article  Google Scholar 

  5. Meyer, N., Bigalke, A., Kaulfuß, A., & Pohnert, G. (2017). Strategies and ecological roles of algicidal bacteria. FEMS Microbiology Reviews, 41(6), 880–899.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, D. M., Cembella, A. D., & Hallegraeff, G. M. (2012). Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science, 4(1), 143–176.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li, Z., Geng, M., Yang, H. (2015). Algicidal activity of Bacillus sp. lzh-5 and its algicidal compounds against Microcystis aeruginosa. Applied Microbiology and Biotechnology, 99(2), 981–990.

  8. van Tol, H. M., Amin, S. A., & Armbrust, E. V. (2017). Ubiquitous marine bacterium inhibits diatom cell division. ISME Journal, 11, 31–42.

    Article  CAS  PubMed  Google Scholar 

  9. Stewart, J. R., & Brown, R. M. (1969). Cytophaga that kills or lyses algae. Science, New Series, 164(3887), 1523–1524.

    CAS  Google Scholar 

  10. Zhang, H., Yu, Z. L., Huang, Q., Xiao, X., Wang, X., Zhang, F., et al. (2011). Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica, 41, 70–77.

    Article  CAS  Google Scholar 

  11. Pokrzywinski, K. L., Tilney, C. L., Modla, S., Caplan, J. L., Ross, J., Warner, M. E., et al. (2017). Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates. Harmful Algae, 62, 127–135.

    Article  CAS  PubMed  Google Scholar 

  12. Yu, X., Cai, G., Wang, H., Hu, Z., Zheng, W., Lei, X., et al. (2018). Fast-growing algicidalStreptomyces sp. U3 and its potential in harmful algal bloom controls. Journal of Hazardous Materials, 341, 138–149.

    Article  PubMed  CAS  Google Scholar 

  13. Deshmukh, S., Bala, K., & Kumar, R. (2019). Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production. Environmental Science and Pollution Research, 26(1), 24462–24473.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, Y., Xu, X., & Vaidyanathan, S. (2020). Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production. Applied Energy, 261, 114420.

    Article  CAS  Google Scholar 

  15. Reis, A., & Gouveia, L. (2016). Low cost microalgal production for biofuels: a review. Current Biotechnology, 5(4), 266–276.

    Article  CAS  Google Scholar 

  16. Menegazzo, M. L., & Fonseca, G. G. (2019). Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renewable and Sustainable Energy Reviews, 107, 87–107.

    Article  CAS  Google Scholar 

  17. Kanda, H., Hoshino, R., Murakami, K., Wahyudiono, Z., & Q., Goto, M. . (2020). Lipid extraction from microalgae covered with biomineralized cell walls using liquefied dimethyl ether. Fuel, 262, 116590.

    Article  CAS  Google Scholar 

  18. Show, K. Y., Lee, D. J., Tay, J. H., Lee, T. M., & Chang, J. S. (2015). Microalgal drying and cell disruption–recent advances. Bioresource technology, 184, 258–266.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, S. Y., Cho, J. M., Chang, Y. K., & Oh, Y. K. (2017). Cell disruption and lipid extraction for microalgalbiorefineries: a review. Bioresource Technology, 244, 1317–1328.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, M., Cheng, H., Chen, S., Wen, S., Wu, X., & Zhang, D. (2018). Microalgal cell disruption via extrusion for the production of intracellular valuables. Energy, 142, 339–345.

    Article  CAS  Google Scholar 

  21. Wang, M., Yuan, W., Jiang, X., Yun, J., & Wang, Z. (2014). Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology, 153(2), 315–321.

    Article  CAS  PubMed  Google Scholar 

  22. Spiden, E. M., Yap, B. H., Hill, D. R. A., Kentish, S. E., Scales, P. J., & Martin, G. J. O. (2013). Quantitative evaluation of the ease of rupture of industrially promising microalgae by high pressure homogenization. Bioresource Technology, 140, 165–171.

    Article  CAS  PubMed  Google Scholar 

  23. Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in applied microbiology, 53(2), 150–154.

    Article  CAS  PubMed  Google Scholar 

  24. Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Donepudi, R., Kolapalli, B., et al. (2018). Production of biofuels from microalgae - a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94, 49–68.

    Article  CAS  Google Scholar 

  25. Demuez, M., Gonzalez-Fernandez, C., & Ballesteros, M. (2015). Algicidal microorganisms and secreted algicides: new tools to induce microalgal cell disruption. Biotechnology Advances, 33(8), 1615–1625.

    Article  CAS  PubMed  Google Scholar 

  26. Boden, R., Murrel, J. C., & Schäfer, H. (2011). Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiology Letters, 322(2), 188–193.

    Article  CAS  PubMed  Google Scholar 

  27. Ding, Y. X., Chin, W. C., Rodriguez, A., Hung, C. C., Santschi, P. H., & Verdugo, P. (2008). Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. Marine Chemistry, 112(1), 11–19.

    Article  CAS  Google Scholar 

  28. González, J. M., Mayer, F., Moran, M. A., Hodson, R. E., Whitman, W. B. (1997). Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. International Journal of Systematic Bacteriology, 47(3), 773–780.

  29. Wang, M., & Yuan, W. (2014). Bacterial lysis of microalgal cells. Journal of Sustainable Bioenergy Systems, 4, 243–248.

    Article  CAS  Google Scholar 

  30. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the2△△Ct method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  31. Furusawa, G., Yoshikawa, T., Yasuda, A., Sakata, T. (2003). Algicidal activity and gliding motility of Saprospira sp. SS98-5. Canadian Journal of Microbiology, 49(2), 92–100.

  32. Volkman, J. K., Brown, M. R., Dunstan, G. A., & Jeffrey, S. W. (2010). The biochemical composition of marine microalgae from the class Eustigmatophyceae. Journal of Phycology, 29(1), 69–78.

    Article  Google Scholar 

  33. Patil, V., Källqvist, T., Olsen, E., Vogt, G., & Gislerød, H. R. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15(1), 1–9.

    Article  CAS  Google Scholar 

  34. Melo, M. M. R., Sapatinha, M., Pinheiro, J., Lemos, M. F. L., Bandarra, N. M., Batista, I., et al. (2020). Supercritical CO2 extraction of Aurantiochytrium sp. biomass for the enhanced recovery of omega-3 fatty acids and phenolic compounds. Journal of CO2 Utilization, 38, 24–31.

  35. Hu, X., Yin, P., Zhao, L., & Yu, Q. (2015). Characterization of cell viability in Phaeocystis globose cultures exposed to marine algicidal bacteria. Biotechnology and Bioprocess Engineering, 20(1), 58–66.

    Article  CAS  Google Scholar 

  36. Domozych, D. S., & Domozych, C. E. (2014). Multicellularity in green algae: upsizing in a walled complex. Frontiers in plant science, 5, 1–8.

    Article  Google Scholar 

  37. Genkov, T., Meyer, M., Griffiths, H., & Spreitzer, R. J. (2010). Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in Chlamydomonas. Journal of Biological Chemistry, 285(26), 19833–19841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, F., Sun, X., Wang, W., Liang, Z., & Wang, F. (2014). De novo transcriptome analysis-gained insights into physiological and metabolic characteristics of Sargassum thunbergii (Fucales, Phaeophyceae). Journal of Applied Phycology, 26(3), 1519–1526.

    Article  CAS  Google Scholar 

  39. Boehm, E. M., Gildenberg, M. S., & Washington, M. T. (2016). The many roles of PCNA in eukaryotic DNA replication. The Enzymes, 39, 231–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, Y. S., Son, H. J., & Jeong, S. Y. (2015). Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species. Journal of Microbiology, 53(8), 511–517.

    Article  CAS  PubMed  Google Scholar 

  41. Petropoulos, K., Bodini, S. F., Fabiani, L., Micheli, L., Porchetta, A., Piermarini, S., et al. (2019). Re-modeling ELISA kits embedded in an automated system suitable for on-line detection of algal toxins in seawater. Sensors and Actuators B: Chemical, 283, 865–872.

    Article  CAS  Google Scholar 

  42. Shi, X., Liu, L., Li, Y., Xiao, Y., Ding, G., Lin, S., et al. (2018). Isolation of an algicidal bacterium and its effects against the harmful-algal-bloom dinoflagellate prorocentrum donghaiense (dinophyceae). Harmful Algae, 80, 72–79.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y., Li, S., Liu, G., Li, X., Yang, Q., Xu, Y., et al. (2020). Continuous production of algicidal compounds against Akashiwo sanguinea via a Vibrio sp. co-culture. Bioresource Technology, 295, 122246.

  44. Cai, G., Yang, X., Lai, Q., Yu, X., Zhang, H., Li, Y., et al. (2016). Lysing bloom-causing alga Phaeocystis globosa with microbial algicide: an efficient process that decreases the toxicity of algal exudates. Scientific Reports, 6(1), 20081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for theextraction of lipids for biofuels: processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.

    Article  CAS  Google Scholar 

  46. Halim, R., Harun, R., Danqua, M. K., & Webley, P. A. (2012). Microalgal cell disruption for biofuel development. Applied Energy, 91(1), 116–121.

    Article  CAS  Google Scholar 

  47. Cheng, J., Huang, R., Li, T., Zhou, J., & Cen, K. (2015). Physicochemical characterization of wet microalgal cells disrupted with instant catapult steam explosion for lipid extraction. Bioresource Technology, 191, 66–72.

    Article  CAS  PubMed  Google Scholar 

  48. Park, J. Y., Nam, B., Choi, S. A., Oh, Y. K., & Lee, J. S. (2014). Effects of anionic surfactant on extraction of free fatty acid from Chlorella vulgaris. Bioresource Technology, 166, 620–624.

    Article  CAS  PubMed  Google Scholar 

  49. Chen, L., Li, R., Ren, X., & Liu, T. (2016). Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica. Bioresource Technology, 214, 138–143.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, S., Du, X., Zhu, J., Meng, C., Zhou, J., & Zou, P. (2020). The complete genome sequence of the algicidal bacterium Bacillus subtilis strain JA and the use of quorum sensing to evaluate its antialgal ability. Biotechnology Reports, 25, e00421.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shi, S. Y., Liu, Y. D., Shen, Y., Li, G., & Li., D. . (2006). Lysis of Aphanizomenon flos-aquae (cyanobacterium) by a bacterium Bacillus cereus. Biological Control, 39(3), 345–351.

    Article  Google Scholar 

  52. Kim, J. D., Kim, J. Y., Park, J. K., & Lee, C. G. (2009). Selective control of the prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB-008041. Marine Biotechnology, 11(4), 463–472.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (41877387). We thank Dr. Mary Ann Moran and Ms. Christa Smith at University of Georgia for providing the bacteria and assisting with its cultivation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Lifu Wang, Shuwen Zhao, and Shanshan Li. The first draft of the manuscript was written by Meng Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shibao Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yuan, W.q., Chen, S. et al. Algal Lysis by Sagittula stellata for the Production of Intracellular Valuables. Appl Biochem Biotechnol 193, 2516–2533 (2021). https://doi.org/10.1007/s12010-021-03502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03502-2

Keywords

Navigation