Skip to main content
Log in

Combination of Adsorption and Cellulose Derivative Membrane Coating for Efficient Immobilization of Laccase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilization of enzyme based on combination of adsorption and cellulose derivative membrane coating was established in this work for the first time. Laccase, a commonly used enzyme in varied fields, was chosen as the model enzyme to demonstrate this method. After investigating operational conditions, the optimal process was obtained as follows: diatomite or HPD-417 as the adsorption carrier, 0.5% (w/v) methylcellulose (40,000~50,000) acetone solution as the coating solution, 0.75% (w/v) polyethylene glycol or maltose as the protective agent, and drying at 4 °C for 9 h. Under the optimal conditions, the residual activities of diatomite and HPD-417 immobilized laccase reached 99.33% and 94.15%, respectively. The study on properties showed that the immobilized laccases held high pH tolerance and thermal stability. The immobilized laccases were further applied to the indigo decolorization and 2, 4-dichlorophenol degradation. They showed high catalytic efficiency and could be reused for several batches. On the whole, the immobilization method developed in this work can effectively avoid the inactivation of laccase during immobilization and improve the stability of immobilized laccase. The laccase immobilized by this method shows obvious potential for environmental governance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng, G. W., & Xu, J. H. (2011). New opportunities for biocatalysis: driving the synthesis of chiral chemicals. Current Opinion in Biotechnology, 22(6), 784–792.

    CAS  PubMed  Google Scholar 

  2. Shi, J., Wu, Y., Zhang, S., Tian, Y., Yang, D., & Jiang, Z. (2018). Bioinspired construction of multi-enzyme catalytic systems. Chemical Society Reviews, 47(12), 4295–4313.

    CAS  PubMed  Google Scholar 

  3. Truppo, M. D. (2017). Biocatalysis in the pharmaceutical industry: the need for speed. ACS Medicinal Chemistry Letters, 8(5), 476–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Eijsink, V. G., Gåseidnes, S., Borchert, T. V., & van den Burg, B. (2005). Directed evolution of enzyme stability. Biomolecular Engineering, 22(1–3), 21–30.

    CAS  PubMed  Google Scholar 

  5. Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 5(8), 4503–4513.

    Google Scholar 

  6. Das, A., Paul, T., Ghosh, P., Halder, S. K., Mohapatra, P. K. D., Pati, B. R., & Mondal, K. C. (2015). Kinetic study of a glucose tolerant β-glucosidase from Aspergillus fumigatus ABK9 entrapped into alginate beads. Waste and Biomass Valorization, 6(1), 53–61.

    Google Scholar 

  7. Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3. Biotech, 3(1), 1–9.

    Google Scholar 

  8. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307.

    CAS  PubMed  Google Scholar 

  9. Altinkaynak, C., Tavlasoglu, S., & Ocsoy, I. (2016). A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93, 105–112.

    PubMed  Google Scholar 

  10. Ranjbakhsh, E., Bordbar, A., Abbasi, M., Khosropour, A., & Shams, E. (2012). Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chemical Engineering Journal, 179, 272–276.

    CAS  Google Scholar 

  11. Hoarau, M., Badieyan, S., & Marsh, E. N. G. (2017). Immobilized enzymes: understanding enzyme–surface interactions at the molecular level. Organic & Biomolecular Chemistry, 15(45), 9539–9551.

    CAS  Google Scholar 

  12. Al-Qodah, Z., Al-Shannag, M., Al-Busoul, M., Penchev, I., & Orfali, W. (2017). Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochemical Engineering Journal, 121, 94–106.

    CAS  Google Scholar 

  13. Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353(16), 2885–2904.

    CAS  Google Scholar 

  14. Fernández-Fernández, M., Sanromán, M. Á., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31(8), 1808–1825.

    PubMed  Google Scholar 

  15. Sheldon, R. (2013). A; van pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42(15), 6223–6235.

    CAS  PubMed  Google Scholar 

  16. Jesionowski, T., Zdarta, J., & Krajewska, B. (2014). Enzyme immobilization by adsorption: A review. Adsorption, 20(5–6), 801–821.

    CAS  Google Scholar 

  17. Cao, J., Xu, J. J., Liu, X. G., Wang, S. L., & Peng, L. Q. (2016). Screening of thrombin inhibitors from phenolic acids using enzyme-immobilized magnetic beads through direct covalent binding by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Journal of Chromatography A, 1468, 86–94.

    CAS  PubMed  Google Scholar 

  18. Bolibok, P., Wiśniewski, M., Roszek, K., & Terzyk, A. P. (2017). Controlling enzymatic activity by immobilization on graphene oxide. Natural Science, 104(3–4), 36.

    Google Scholar 

  19. Khaldi, K., Sam, S., Lounas, A., Yaddaden, C., & Gabouze, N.-E. (2017). Comparative investigation of two methods for acetylcholinesterase enzyme immobilization on modified porous silicon. Applied Surface Science, 421, 148–154.

    CAS  Google Scholar 

  20. Su, E., Meng, Y., Ning, C., Ma, X., & Deng, S. (2018). Magnetic combined cross-linked enzyme aggregates (Combi-CLEAs) for cofactor regeneration in the synthesis of chiral alcohol. Journal of Biotechnology, 271, 1–7.

    CAS  PubMed  Google Scholar 

  21. Meng, Y., Huijuan, J., Chenxi, N., Dongzhi, W., & Erzheng, S. (2018). Preparation of combined cross-linked enzyme aggregates and its application in synthesis of chiral alcohols by the asymmetric reduction of carbanyl group. Chemmical Journal of Chinese University-Chinese, 39(1), 54–63.

    Google Scholar 

  22. Palanisamy, S., Ramaraj, S. K., Chen, S. M., Yang, T. C., Yi-Fan, P., Chen, T. W., Velusamy, V., & Selvam, S. (2017). A novel laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. Scientific Reports, 7(1), 1–12.

    CAS  Google Scholar 

  23. Hollmann, F., Gumulya, Y., Tölle, C., Liese, A., & Thum, O. (2008). Evaluation of the laccase from Myceliophthora thermophila as industrial biocatalyst for polymerization reactions. Macromolecules, 41(22), 8520–8524.

    CAS  Google Scholar 

  24. Arıca, M. Y., Altıntas, B., & Bayramoğlu, G. (2009). Immobilization of laccase onto spacer-arm attached non-porous poly (GMA/EGDMA) beads: application for textile dye degradation. Bioresource Technology, 100(2), 665–669.

    PubMed  Google Scholar 

  25. Matijošytė, I., Arends, I. W., de Vries, S., & Sheldon, R. A. (2010). Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. Journal of Molecular Catalysis B: Enzymatic, 62(2), 142–148.

    Google Scholar 

  26. Drozd, R., Rakoczy, R., Wasak, A., Junka, A., & Fijałkowski, K. (2018). The application of magnetically modified bacterial cellulose for immobilization of laccase. International Journal of Biological Macromolecules, 108, 462–470.

    CAS  PubMed  Google Scholar 

  27. Shao, B., Liu, Z., Zeng, G., Liu, Y., Yang, X., Zhou, C., Chen, M., Liu, Y., Jiang, Y., & Yan, M. (2019). Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal. Journal of Hazardous Materials, 362, 318–326.

    CAS  PubMed  Google Scholar 

  28. Li, N. (2006). The comparison on various methods for determining different proteins. Journal of Shanxi Agricultural University, 26(2), 132–134.

    CAS  Google Scholar 

  29. Mohammadi, M., As’Habi, M. A., Salehi, P., Yousefi, M., & Brask, J. (2017). Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. International Journal of Biological Macromolecules, 109, 443–447.

    PubMed  Google Scholar 

  30. Türkhan, A., Kaya, E. D., & Koçyiğit, A. (2020). An innovator support material for tyrosinase immobilization: antimony-doped tin oxide thin films (ATO-TF). Applied Biochemistry and Biotechnology, 2.

  31. Sathishkumar, P., Kamala-Kannan, S., Cho, M., Kim, J. S., Hadibarata, T., Salim, M. R., & Oh, B. T. (2014). Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. Journal of Molecular Catalysis B: Enzymatic, 100, 111–120.

    CAS  Google Scholar 

  32. Singhania, T., Sinha, H., Das, P., & Kumar Mukherjee, A. (2015). Efficient degumming of rice bran oil by immobilized PLA1 from thermomyces lanuginosus. Food Technology and Biotechnology, 53(1), 91–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Qu, Y., Sun, L., Li, X., Zhou, S., Zhang, Q., Sun, L., Yu, D., Jiang, L., & Tian, B. (2016). Enzymatic degumming of soybean oil with magnetic immobilized phospholipase A2. LWT, 73, 290–295.

    CAS  Google Scholar 

  34. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.

    CAS  Google Scholar 

  35. Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. (2012). Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 30(3), 489–511.

    CAS  PubMed  Google Scholar 

  36. Liu, Y., & Chen, J. Y. (2016). Enzyme immobilization on cellulose matrixes. Journal of Bioactive and Compatible Polymers, 31(6), 553–567.

    CAS  Google Scholar 

  37. Yanilmaz, M., Lu, Y., Zhu, J., & Zhang, X. (2016). Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. Journal of Power Sources, 313, 205–212.

    CAS  Google Scholar 

  38. Bryjak, J., Liesiene, J., & Štefuca, V. (2008). Man-tailored cellulose-based carriers for invertase immobilization. Cellulose, 15(4), 631–640.

    CAS  Google Scholar 

  39. Yang, J. C., Dong, S., & Yang, X. M. (2000). Protection of immobilized cellulase by trehalose. Journal of Chemical Industry and Engineering, 51(2), 193–197.

    CAS  Google Scholar 

  40. Lee, S. H., Doan, T. T. N., Ha, S. H., & Koo, Y. M. (2007). Using ionic liquids to stabilize lipase within sol–gel derived silica. Journal of Molecular Catalysis B: Enzymatic, 45(1–2), 57–61.

    CAS  Google Scholar 

  41. Kang, M., Jang, H., Kim, M., Kim, M., Joh, S., Kwon, J., & Kwon, Y. (2010). Development of a stabilizer for lyophilization of an attenuated duck viral hepatitis vaccine. Poultry Science, 89(6), 1167–1170.

    CAS  PubMed  Google Scholar 

  42. Reetz, M. T., Zonta, A., Vijayakrishnan, V., & Schimossek, K. (1998). Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials: magnetic separation of heterogeneous biocatalysts. Journal of Molecular Catalysis A: Chemical, 134(1–3), 251–258.

    CAS  Google Scholar 

  43. Tiago, L., Peirce, S., Rueda, N., Marzocchella, A., Gonçalves, L. R., Rocha, M. V. P., & Fernandez-Lafuente, R. (2016). Ion exchange of β-galactosidase: the effect of the immobilization pH on enzyme stability. Process Biochemistry, 51(7), 875–880.

    Google Scholar 

  44. Jiang, Z., Wang, L., Che, H., & Tian, B. (2014). Effects of temperature and pH on angiotensin-I-converting enzyme inhibitory activity and physicochemical properties of bovine casein peptide in aqueous Maillard reaction system. LWT-Food Science and Technology, 59(1), 35–42.

    CAS  Google Scholar 

  45. Huang, X. J., Chen, P. C., Huang, F., Ou, Y., Chen, M. R., & Xu, Z. K. (2011). Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic, 70(3–4), 95–100.

    CAS  Google Scholar 

  46. Li, B., Wang, J., Zhang, X., & Zhao, B. (2016). An enzyme net coating the surface of nanoparticles: a simple and efficient method for the immobilization of phospholipase D. Industrial and Engineering Chemistry Research, 55(40), 10555–10565.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the China Postdoctoral Science Foundation (2017T100373 and 2016M600417), the National Key R&D Program of China (2017YFD0600701), the Six Talent Peaks Project in Jiangsu Province (2015-JY-016), and the 333 Project of Jiangsu Province (BRA2017458).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erzheng Su.

Ethics declarations

Conflict Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Liu, F., Dong, Q. et al. Combination of Adsorption and Cellulose Derivative Membrane Coating for Efficient Immobilization of Laccase. Appl Biochem Biotechnol 193, 446–462 (2021). https://doi.org/10.1007/s12010-020-03446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03446-z

Keywords

Navigation