Skip to main content
Log in

Multilayered Nano-Entrapment of Lipase through Organic-Inorganic Hybrid Formation and the Application in Cost-Effective Biodiesel Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Significant components of cost-effective medium for Magnusiomyces capitatus A4C extracellular lipase (ECL) production were optimized via a five-level factorial design. A simplistic, economical, and green approach was adopted for biomimetic mineralization to prepare multilayered nano-entrapped ECL, which were then applied as biocatalysts for the production of fatty acid methyl ester (FAME). The optimal ECL (0.8 mg protein/mL) and CuSO4∙5H2O (1.2 mM) showed the highest capacity for enzyme loading. The ECL-CuSO4-hybrid showed an 89.7% conversion of triacylglycerides into FAME via transesterification and a 98.7% conversion of oleic acid into FAME via esterification at 72 h. The ECL-CuSO4-hybrid gave 65% and 78.7% FAME production after 5 successive reuses via transesterification and esterification reactions, respectively. Therefore, these ECL-inorganic hybrid biocatalysts have high economical potential to be used for the production of biodiesel as the future petrodiesel replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Azad, A. K. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel-part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renewable and Sustainable Energy Reviews, 55, 1109–1128. https://doi.org/10.1016/j.rser.2015.04.163.

    Article  CAS  Google Scholar 

  2. Gurunathan, B., & Ravi, A. (2015). Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst. Bioresource Technology, 188, 124–127. https://doi.org/10.1016/j.biortech.2015.01.012.

    Article  CAS  PubMed  Google Scholar 

  3. Sawangkeaw, R., & Ngamprasertsith, S. (2013). A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews, 25, 97–108. https://doi.org/10.1016/j.rser.2013.04.007.

    Article  CAS  Google Scholar 

  4. Lee, J. H., Kim, S. B., Yoo, H. Y., Lee, J. H., Han, S. O., Park, C., & Kim, S. W. (2013). Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production, 30(6), 1335–1338. https://doi.org/10.1007/s11814-013-0058-z

  5. Zhao, X., Qi, F., Yuan, C., Du, W., & Liu, D. (2015). Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renewable and Sustainable Energy Reviews, 44, 182–197. https://doi.org/10.1016/j.rser.2014.12.021.

    Article  CAS  Google Scholar 

  6. Vakhlu, J., & Kour, A. (2006). Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9(1), 69–85. https://doi.org/10.2225/vol9-issue1-fulltext-9.

    Article  CAS  Google Scholar 

  7. Romero, C. M., Pera, L. M., Loto, F., Vallejos, C., Castro, G., & Baigori, M. D. (2012). Purification of an organic solvent-tolerant lipase from Aspergillus Niger MYA 135 and its application in ester synthesis. Biocatalysis and Agricultural Biotechnology, 1(1), 25–31. https://doi.org/10.1016/j.bcab.2011.08.013.

    Article  CAS  Google Scholar 

  8. Rodrigues, J., Perrier, V., Lecomte, J., Dubreucq, E., & Ferreira-dias, S. (2016). Bioresource technology biodiesel production from crude jatropha oil catalyzed by immobilized lipase/acyltransferase from Candida parapsilosis in aqueous medium. Bioresource Technology, 218, 1224–1229. https://doi.org/10.1016/j.biortech.2016.07.090.

    Article  CAS  PubMed  Google Scholar 

  9. Shah, S., & Gupta, M. N. (2007). Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry, 42(3), 409–414. https://doi.org/10.1016/j.procbio.2006.09.024.

    Article  CAS  Google Scholar 

  10. Ramos, E. Z., Júnior, R. H. M., De Castro, P. F., Tardioli, P. W., Mendes, A. A., Fernandéz-Lafuente, R., & Hirata, D. B. (2015). Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. Journal of Molecular Catalysis B: Enzymatic, 118, 43–51. https://doi.org/10.1016/j.molcatb.2015.05.009.

    Article  CAS  Google Scholar 

  11. Galvão, W., Júnior, D. M., Rafael, C., Terrasan, F., Fernández, G., Jose, L., et al. (2017). Solid-phase amination of Geotrichum candidum lipase : Ionic immobilization , stabilization and fish oil hydrolysis for the production of Omega-3 polyunsaturated fatty acids. European Food Research and Technology, 243(8), 1375–1384. https://doi.org/10.1007/s00217-017-2848-8.

    Article  CAS  Google Scholar 

  12. Jiang, W., Wang, X., Yang, J., Han, H., Li, Q., & Tang, J. (2017). Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. Journal of Colloid and Interface Science, 514(2018), 102–107. https://doi.org/10.1016/j.jcis.2017.12.025.

    Article  CAS  PubMed  Google Scholar 

  13. Verma, M. L., Barrow, C. J., & Puri, M. (2013). Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Applied Microbiology and Biotechnology, 97(1), 23–39. https://doi.org/10.1007/s00253-012-4535-9.

    Article  CAS  PubMed  Google Scholar 

  14. Cao, S. L., Huang, Y. M., Li, X. H., Xu, P., Wu, H., Li, N., Lou, W. Y., & Zong, M. H. (2016). Preparation and characterization of immobilized lipase from Pseudomonas Cepacia onto magnetic cellulose nanocrystals. Scientific Reports, 6(January), 1–12. https://doi.org/10.1038/srep20420.

    Article  CAS  Google Scholar 

  15. Altinkaynak, C., Tavlasoglu, S., Özdemir, N., & Ocsoy, I. (2016). A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93–94, 105–112. https://doi.org/10.1016/j.enzmictec.2016.06.011.

    Article  CAS  PubMed  Google Scholar 

  16. Ge, J., Lei, J., & Zare, R. N. (2012). Protein-inorganic hybrid nanoflowers. Nature Nanotechnology, 7(7), 428–432. https://doi.org/10.1038/nnano.2012.80.

    Article  CAS  PubMed  Google Scholar 

  17. Sun, J., Ge, J., Liu, W., Lan, M., Zhang, H., Wang, P., Wang, Y., & Niu, Z. (2014). Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: Synthesis and application as a colorimetric sensor. Nanoscale, 6(1), 255–262. https://doi.org/10.1039/c3nr04425d.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, B., Li, P., Zhang, H., Wang, H., Li, X., Tian, L., et al. (2016). Preparation of lipase/Zn 3 (PO 4) 2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chemical Engineering Journal, 3. https://doi.org/10.1016/j.cej.2016.01.104.

  19. Cui, J., Zhao, Y., Liu, R., Zhong, C., & Jia, S. (2016). Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Nature Publishing Group, 29(1), 1–13. https://doi.org/10.1038/srep27928.

    Article  CAS  Google Scholar 

  20. Baloch, K. A., Upaichit, A., & Cheirsilp, B. (2019). Use of low-cost substrates for cost-effective production of extracellular and cell-bound lipases by a newly isolated yeast Dipodascus capitatus A4C. Biocatalysis and Agricultural Biotechnology, 19(December 2018), 101102. https://doi.org/10.1016/j.bcab.2019.101102.

    Article  Google Scholar 

  21. Lee, S. Y., & Rhee, J. S. (1993). Production and partial purification of a lipase from Pseudomonas putida 3SK. Enzyme and Microbial Technology, 15(7), 617–623. https://doi.org/10.1016/0141-0229(93)90026-X.

    Article  CAS  Google Scholar 

  22. Verma, S., Saxena, J., Prasanna, R., Sharma, V., & Nain, L. (2012). Medium optimization for a novel crude-oil degrading lipase from Pseudomonas aeruginosa SL-72 using statistical approaches for bioremediation of crude-oil. Biocatalysis and Agricultural Biotechnology, 1(4), 321–329. https://doi.org/10.1016/j.bcab.2012.07.002.

    Article  CAS  Google Scholar 

  23. Fotiadou, R., Patila, M., Hammami, M. A., Enotiadis, A., Moschovas, D., Tsirka, K., Spyrou, K., Giannelis, E. P., Avgeropoulos, A., Paipetis, A., Gournis, D., & Stamatis, H. (2019). Development of effective lipase-hybrid nanoflowers enriched with carbon and magnetic nanomaterials for biocatalytic transformations. Nanomaterials, 9(6). https://doi.org/10.3390/nano9060808.

  24. Zhang, D.-H., Yuwen, L.-X., & Peng, L.-J. (2013). Parameters affecting the performance of immobilized enzyme. Journal of Chemistry, 2013, 1–7. https://doi.org/10.1155/2013/946248.

    Article  CAS  Google Scholar 

  25. Kornecki, J. F., Pedrero, S. G., Virgen-Ortíz, J. J., Siar, E.-H., Fernandez-Lafuente, R., Fernandez-Lopez, L., & Zaak, H. (2017). Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. Process Biochemistry, 56, 117–123. https://doi.org/10.1016/j.procbio.2017.02.024.

    Article  CAS  Google Scholar 

  26. Fernandez-Lopez, L., Pedrero, S. G., Lopez-Carrobles, N., Gorines, B. C., Virgen-Ortíz, J. J., & Fernandez-Lafuente, R. (2017). Effect of protein load on stability of immobilized enzymes. Enzyme and Microbial Technology, 98, 18–25. https://doi.org/10.1016/j.enzmictec.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  27. Laine, B. R. M., Choi, J., & The, I. L. (2001). Organic±inorganic nanocomposites with completely defined interfacial interactions**, (11), 800–803.

  28. Mir, S. H., Nagahara, L. A., Thundat, T., Mokarian-Tabari, P., Furukawa, H., & Khosla, A. (2018). Review—Organic-inorganic hybrid functional materials: An integrated platform for applied technologies. Journal of the Electrochemical Society, 165(8), B3137–B3156. https://doi.org/10.1149/2.0191808jes.

    Article  CAS  Google Scholar 

  29. Kuo, T. C., Shaw, J. F., & Lee, G. C. (2015). Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes. Bioresource Technology, 192, 54–59. https://doi.org/10.1016/j.biortech.2015.05.008.

    Article  CAS  PubMed  Google Scholar 

  30. Balasubramaniam, B., Sudalaiyadum Perumal, A., Jayaraman, J., Mani, J., & Ramanujam, P. (2012). Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil). Waste Management, 32(8), 1539–1547. https://doi.org/10.1016/j.wasman.2012.03.011.

    Article  CAS  PubMed  Google Scholar 

  31. Shimada, Y., Watanabe, Y., Samukawa, T., Sugihara, A., Noda, H., Fukuda, H., & Tominaga, Y. (1999). Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. Journal of the American Oil Chemists’ Society, 76(7), 789–793. https://doi.org/10.1007/s11746-999-0067-6.

    Article  CAS  Google Scholar 

  32. Kumari, A., Mahapatra, P., Garlapati, V. K., & Banerjee, R. (2009). Enzymatic transesterification of Jatropha oil. Biotechnology for Biofuels, 2(1), 1. https://doi.org/10.1186/1754-6834-2-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rakchai, N., H-kittikun, A., & Zimmermann, W. (2016). The production of immobilized whole-cell lipase from Aspergillus nomius ST57 and the enhancement of the synthesis of fatty acid methyl esters using a two-step reaction. Journal of Molecular Catalysis. B, Enzymatic. https://doi.org/10.1016/j.molcatb.2016.12.006.

  34. Arumugam, A., & Ponnusami, V. (2014). Biodiesel production from Calophyllum inophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams. Renewable Energy, 64, 276–282. https://doi.org/10.1016/j.renene.2013.11.016.

    Article  CAS  Google Scholar 

  35. Tamalampudi, S., Talukder, M. R., Hama, S., Numata, T., Kondo, A., & Fukuda, H. (2008). Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal, 39(1), 185–189. https://doi.org/10.1016/j.bej.2007.09.002.

    Article  CAS  Google Scholar 

  36. Jiang, Y., Liu, X., Chen, Y., Zhou, L., He, Y., Ma, L., & Gao, J. (2014). Pickering emulsion stabilized by lipase-containing periodic mesoporous organosilica particles: A robust biocatalyst system for biodiesel production. Bioresource Technology, 153, 278–283. https://doi.org/10.1016/j.biortech.2013.12.001.

  37. Dantas, J., Leal, E., Cornejo, D. R., Kiminami, R. H. G. A., & Costa, A. C. F. M. (2018). Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4 synthesized in pilot-scale. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2018.08.012

  38. Savaliya, M. L., & Dholakiya, B. Z. (2015). Silica supported microporous melamine tri sulfonic acid catalyst towards biodiesel fuel production from waste cooking oil and utilization of side stream. Applied Catalysis A: General, 494, 12–21. https://doi.org/10.1016/j.apcata.2015.01.015.

    Article  CAS  Google Scholar 

  39. Yang, T. H., Kwon, M. A., Lee, J. Y., Choi, J. E., Oh, J. Y., & Song, J. K. (2015). In situ immobilized lipase on the surface of intracellular polyhydroxybutyrate granules: Preparation, characterization, and its promising use for the synthesis of fatty acid alkyl esters. Applied Biochemistry and Biotechnology, 177(7), 1553–1564. https://doi.org/10.1007/s12010-015-1836-3.

    Article  CAS  PubMed  Google Scholar 

  40. Martínez-Ruiz, A., Tovar-Castro, L., García, H. S., Saucedo-Castañeda, G., & Favela-Torres, E. (2018). Continuous ethyl oleate synthesis by lipases produced by solid-state fermentation by Rhizopus microsporus. Bioresource Technology, 265(May), 52–58. https://doi.org/10.1016/j.biortech.2018.05.080.

    Article  CAS  PubMed  Google Scholar 

  41. Imanparast, S., Hamedi, J., & Faramarzi, M. A. (2018). Enzymatic esterification of acylglycerols rich in omega-3 from flaxseed oil by an immobilized solvent-tolerant lipase from Actinomadura sediminis UTMC 2870 isolated from oil-contaminated soil. Food Chemistry, 245(June 2017), 934–942. https://doi.org/10.1016/j.foodchem.2017.11.080.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Higher Education Research Promotion and Thailand’s Education Hub for Southern Regions of ASEAN Countries Project Office of the Higher Education Commission under Contract No. THE-AC 024/2015. Besides, the research was funded by the Prince of Songkla University under Contract No. AGR6202081S. The second and third authors are supported by the Thailand Research Fund under Grant No. RTA6280014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apichat Upaichit.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cost-effective extracellular lipase production by Magnusiomyces capitatus A4C was optimized.

• Immobilization of extracellular lipase was performed by enzyme-inorganic mineralization.

• Application of lipase-inorganic hybrids for biodiesel production via transesterification and esterification.

• Achievement of 98% of biodiesel yield.

• Consecutive reuses of lipase-inorganic hybrids in different batches.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baloch, K.A., Upaichit, A. & Cheirsilp, B. Multilayered Nano-Entrapment of Lipase through Organic-Inorganic Hybrid Formation and the Application in Cost-Effective Biodiesel Production. Appl Biochem Biotechnol 193, 165–187 (2021). https://doi.org/10.1007/s12010-020-03404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03404-9

Keywords

Navigation