Skip to main content
Log in

High-Density pH-Auxostat Fed-Batch Culture of Schizochytrium limacinum SR21 with Acetic Acid as a Carbon Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Schizochytrium limacinum SR21 is an important strain for industrial production of docosahexaenoic acid (DHA), which is an important omega-3 fatty acid used in the nutraceutical and food industry. However, the high cost of carbon sources has limited its further application in the market with much larger volume, such as animal feed for aquaculture, poultry, and livestock. To seek low-cost carbon source, acetic acid is tested in the present study. The effect of different factors, including initial carbon source concentration, pH, aeration rate, and nitrogen sources, on biomass, lipid, and DHA production were tested. With optimized culture conditions, the biomass concentration of 146 g/L, total fatty acids (TFAs) of 82.3 g/L, and DHA content of 23.0 g/L were achieved with a pH-auxostat fed-batch cultivation. These results suggested that acetic acid is a promising feedstock for the low-cost production of DHA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hussein, J., El-Naggar, M., Badawy, E., El-laithy, N., El-Waseef, M., Hassan, H., & Abdel-Latif, Y. (2020). Homocysteine and asymmetrical dimethylarginine in diabetic rats treated with docosahexaenoic acid–loaded zinc oxide nanoparticles. Applied Biochemistry and Biotechnology, 1–13.

  2. Ramakrishnan, U., Gonzalez-Casanova, I., Schnaas, L., DiGirolamo, A., Quezada, A. D., Pallo, B. C., & Martorell, R. (2016). Prenatal supplementation with DHA improves attention at 5 y of age: a randomized controlled trial. The American Journal of Clinical Nutrition, 104(4), 1075–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geng, L., Chen, S., Sun, X., Hu, X., Ji, X., Huang, H., & Ren, L. (2019). Fermentation performance and metabolomic analysis of an engineered high-yield PUFA-producing strain of Schizochytrium sp. Bioprocess and Biosystems Engineering, 42(1), 71–81.

    Article  CAS  PubMed  Google Scholar 

  4. Hu, X. C., Ren, L. J., Chen, S. L., Zhang, L., Ji, X. J., & Huang, H. (2015). The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp. Bioprocess and Biosystems Engineering, 38(11), 2129–2136.

    Article  CAS  PubMed  Google Scholar 

  5. Kyle, D. J. (2001). The large-scale production and use of a single-cell oil highly enriched in docosahexaenoic acid. American Chemical Society, 92–107.

  6. Lan, J. C. W. (2015). The optimization of docosahexaenoic acid production from waste by Schizochytrium limacinum SR21. Journal of Biotechnology, 208, S33.

    Article  Google Scholar 

  7. Patil, K. P., & Gogate, P. R. (2015). Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Journal of Chemical Engineering, 268, 187–196.

    Article  CAS  Google Scholar 

  8. Zeng, Y., Ji, X. J., Lian, M., Ren, L. J., Jin, L. J., Ouyang, P. K., & Huang, H. (2011). Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308. Applied Biochemistry and Biotechnology, 164(3), 249–255.

    Article  CAS  PubMed  Google Scholar 

  9. Gong, G., Zhang, X., & Tan, T. (2019). Simultaneously enhanced intracellular lipogenesis and β-carotene biosynthesis of Rhodotorula glutinis by light exposure with sodium acetate as the substrate. Bioresource Technology, 295, 122274.

    Article  CAS  PubMed  Google Scholar 

  10. Chi, Z., Pyle, D., Wen, Z., Frear, C., & Chen, S. A. (2007). Laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 42(11), 1537–1545.

    Article  CAS  Google Scholar 

  11. Yu, X. J., Yu, Z. Q., Liu, Y. L., Sun, J., Zheng, J. Y., & Wang, Z. (2015). Utilization of high-fructose corn syrup for biomass production containing high levels of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Applied Biochemistry and Biotechnology, 177(6), 1229–1240.

    Article  CAS  PubMed  Google Scholar 

  12. Fan, K. W., Chen, F., Jones, E. B. G., & Vrijmoed, L. L. P. (2000). Utilization of food processing waste by Thraustochytrids. Fungal Diversity.

  13. Liang, Y., Sarkany, N., Cui, Y., Yesuf, J., Trushenski, J., & Blackburn, J. W. (2010). Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Technology, 101(10), 3623–3627.

    Article  CAS  PubMed  Google Scholar 

  14. Song, H. S., Seo, H. M., Jeon, J. M., Moon, Y. M., Hong, J. W., Hong, Y. G., Bhatia, S. K., Ahn, J., Lee, H., & Kim, W. (2018). Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli. Biotechnology and Bioengineering, 115(8), 1971–1978.

    Article  CAS  PubMed  Google Scholar 

  15. Bhatia, S. K., & Yang, Y. H. (2017). Microbial production of volatile fatty acids: current status and future perspectives. Reviews in Environmental Science and Tecnology., 16(2), 327–345.

    CAS  Google Scholar 

  16. El-Gammal, M., Abou-Shanab, R., Angelidaki, I., Omar, B., Sveding, P. V., Karakashev, D. B., & Zhang, Y. (2017). High efficient ethanol and VFA production from gas fermentation: effect of acetate, gas and inoculum microbial composition. Biomass and Bioenergy., 105, 32–40.

    Article  CAS  Google Scholar 

  17. Gong, Z., Shen, H., Zhou, W., Wang, Y., Yang, X., & Zhao, Z. K. (2015). Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnology Biofuels, 8(1), 189.

    Article  CAS  Google Scholar 

  18. Zhao, X., Davis, K., Brown, R., Jarboe, L., & Wen, Z. (2015). Alkaline treatment for detoxification of acetic acid-rich pyrolytic bio-oil for microalgae fermentation: effects of alkaline species and the detoxification mechanisms. Biomass and Bioenergy., 802, 03–212.

    Google Scholar 

  19. Han, W., Wang, X., Ye, L., Huang, J., Tang, J., Li, Y., & Ren, N. (2015). Fermentative hydrogen production using wheat flour hydrolysate by mixed culture. Hydrogen Energy., 40(13), 4474–4480.

    Article  CAS  Google Scholar 

  20. Yuan, Q., Sparling, R., & Oleszkiewicz, J. A. (2011). VFA generation from waste activated sludge: effect of temperature and mixing. Chemosphere., 82(4), 603–607.

    Article  CAS  PubMed  Google Scholar 

  21. Perez-Garcia, O., Escalante, FM., de-Bashan, LE., Bashan, YJ. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research. 45(1), 11–36.

  22. Lian, J., Garcia-Perez, M., Coates, R., Wu, H., & Chen, S. J. (2012). Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 118, 177–186.

    Article  CAS  PubMed  Google Scholar 

  23. Sijtsma, L., Anderson, A. J., & Ratledge, C. (2010). Alternative carbon sources for heterotrophic production of docosahexaenoic acid by the marine alga Crypthecodinium cohnii. In Single cell oils (Second Edition) (pp. 131–149). Elsevier.

  24. Zhu, L., Zhang, X., Ji, L., Song, X., & Kuang, C. (2007). Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochemistry, 42(2), 210–214.

    Article  CAS  Google Scholar 

  25. Ratledge, C., Kanagachandran, K., Anderson, A. J., Grantham, D. J., & Stephenson, J. C. (2001). Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids, 36(11), 1241–1246.

    Article  CAS  PubMed  Google Scholar 

  26. Guo, D.-S., Ji, X.-J., Ren, L.-J., Li, G.-L., Yin, F.-W., & Huang, H. (2016). Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp. Bioresource Technology, 216, 422–427.

    Article  CAS  PubMed  Google Scholar 

  27. Metz, J. G., Kuner, J., Rosenzweig, B., Lippmeier, J. C., Roessler, P., & Zirkle, R. (2009). Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: release of the products as free fatty acids. Journal of Plant Physiology and Biochemistry., 47(6), 472–478.

    Article  CAS  PubMed  Google Scholar 

  28. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(11), 807–815.

    Article  CAS  PubMed  Google Scholar 

  29. Ren, L. J., Huang, H., Xiao, A. H., Lian, M., Jin, L. J., & Ji, X. J. (2009). Enhanced docosahexaenoicacid production by reinforcing acetyl-CoA and NADPH supply in Schizochytriumsp. HX-308. Bioprocess and Biosystems Engineering, 32(6), 837–843.

    Article  CAS  PubMed  Google Scholar 

  30. Casal, M., Paiva, S., Queirós, O., & Soares-Silva, I. (2008). Transport of carboxylic acids in yeasts. FEMS Microbiology Reviews, 32(6), 974–994.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z. J., Liu, L. P., Wen, P., Li, N., Zong, M. H., & Wu, H. (2015). Effects of acetic acid and pH on the growth and lipid accumulation of the oleaginous yeast Trichosporon fermentans. Bio Resources., 10(3), 4152–4166.

    CAS  Google Scholar 

  32. Béligon, V., Poughon, L., Christophe, G., Lebert, A., Larroche, C., & Fontanille, P. (2015). Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate. Bioresource Technology, 192, 582–591.

    Article  CAS  PubMed  Google Scholar 

  33. Sun, L., Ren, L., Zhuang, X., Ji, X., Yan, J., & Huang, H. (2014). Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresource Technology, 159, 199–206.

    Article  CAS  PubMed  Google Scholar 

  34. Álvarez-Ordóñe, A., Fernández, A., Bernardo, A., & López, M. (2010). Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium. International Journal of Food Microbiology, 136(3), 278–282.

    Article  CAS  Google Scholar 

  35. Zhu, L., Zhang, X., Ren, X., & Zhu, Q. (2008). Effects of culture conditions on growth and docosahexaenoic acid production from Schizochytrium limacinum. Journal of Ocean University of China, 7(1), 83–88.

    Article  CAS  Google Scholar 

  36. Huang, T. Y., Lu, W. C., & Chu, I. M. (2012). A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22: 6 proportions in the total fatty acid. Bioresource Technology, 12, 38–14.

    Google Scholar 

  37. Qu, L., Ren, L. J., Sun, G. N., Ji, X. J., Nie, Z. K., & Huang, H. (2013). Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess and Biosystems Engineering, 36(12), 1905–1912.

    Article  CAS  PubMed  Google Scholar 

  38. Furlan, V. J. M., Maus, V., Batista, I., & Bandarra, N. M. (2017). Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology, 48(2), 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sahin, D., Tas, E., & Altindag, U. H. (2018). Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. AMB Express, 8(1), 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the Open Research Fund Program of Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry (CP-2018-YB8) and the Department of Ocean and Fishery of Liaoning Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyou Chi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Acetic acid efficiently converted into omega-3 fatty acids by S. limacinum SR21

• High biomass concentration of 146 g/L and DHA production of 23.0 g/L achieved

• Acetic acid resulted in higher biomass concentration and DHA production than glucose

Electronic Supplementary Material

ESM 1

(DOCX 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiq, M., Zeb, L., Cui, G. et al. High-Density pH-Auxostat Fed-Batch Culture of Schizochytrium limacinum SR21 with Acetic Acid as a Carbon Source. Appl Biochem Biotechnol 192, 1163–1175 (2020). https://doi.org/10.1007/s12010-020-03396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03396-6

Keywords

Navigation