Skip to main content
Log in

Reactive Green 5–Decorated Polyacrylamide/Chitosan Cryogel: An Affinity Matrix for Catalase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 03 August 2020

This article has been updated

Abstract

Acrylamide/chitosan-based cryogel was fabricated, and a triazine dye, Reactive Green 5, was attached to the cryogel by nucleophilic substitution to build a dye affinity support for adsorption of catalase enzyme. Characterization of cryogel was performed using FTIR, SEM, EDX, BET, and swelling test. Synthesized cryogel beared pores with ~ 200 μm in size and the surface area of 11.8 m2/g. Maximum catalase adsorption was (17.6 ± 0.29 mg/g) measured at pH 4.0 and 25 °C. The adsorption sites on the cryogel were saturated at 0.75 mg/mL enzyme concentration. Increased ionic strength caused a decrease in adsorption capacity. Desorption of catalase from cryogel was enabled using 0.5 M NaSCN solution. Consecutive adsorption experiments were carried out fifteen times to evaluate the reusability of the cryogel. Thermal, storage, and operational stabilities of immobilized catalase were higher than the free one. The data produced implicate that catalase-adsorbed dye-affinity cryogel may be used for H2O2 detection or removal when necessary.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 03 August 2020

    The original version of this article unfortunately contained a mistake.

References

  1. Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35(2–3), 126–139.

    Article  CAS  Google Scholar 

  2. Grigoras, A. G. (2017). Catalase immobilization—a review. Biochemical Engineering Journal, 117, 1–20.

    Article  CAS  Google Scholar 

  3. Lozinsky, V. I., Plieva, F. M., Galaev, I. Y., & Mattiasson, B. (2001). The potential of polymeric cryogels in bioseparation. Bioseparation, 10(4–5), 163–188.

    Article  CAS  Google Scholar 

  4. Memic, A., Colombani, T., Eggermont, L. J., Rezaeeyazdi, M., Steingold, J., Rogers, Z. J., KNavare, J., Mohammed, H. S., & Bencherif, S. A. (2019). Latest advances in cryogel technology for biomedical applications. Advances in Therapy, 2(4), 1800114.

    Article  Google Scholar 

  5. Saini, R. K., Bagri, L. P., & Bajpai, A. K. (2019). Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids Surf. B, 177, 211–218.

    Article  Google Scholar 

  6. de Oliveira, A. C. F., Neves, I. C. O., Saraiva, J. A. M., de Carvalho, M. F. F., Batista, G. A., Veríssimo, L. A. A., & Resende, J. V. D. (2019). Capture of lysozyme on macroporous cryogels by hydrophobic affinity chromatography. Separation Science and Technology, 1–13.

  7. Li, J., Wang, Y., Zhang, L., Xu, Z., Dai, H., & Wu, W. (2019). Nanocellulose/gelatin composite cryogels for controlled drug release. ACS Sustainable Chemistry & Engineering, 7(6), 6381–6389.

    Article  CAS  Google Scholar 

  8. Bayramoglu, G., & Arica, M. Y. (2010). Reversible immobilization of catalase on fibrous polymer grafted and metal chelated chitosan membrane. Journal of Molecular Catalysis B: Enzymatic, 62(3–4), 297–304.

    Article  CAS  Google Scholar 

  9. Shakya, A. K., Sharma, P., & Kumar, A. (2010). Synthesis and characterization of thermo-responsive poly (N-isopropylacrylamide)-bovine liver catalase bioconjugate. Enzyme and Microbial Technology, 47(6), 277–282.

    Article  CAS  Google Scholar 

  10. Alptekin, Ö., Tükel, S. S., Yıldırım, D., & Alagöz, D. (2010). Immobilization of catalase onto Eupergit C and its characterization. Journal of Molecular Catalysis B: Enzymatic, 64(3–4), 177–183.

    Article  CAS  Google Scholar 

  11. Orhan, H., Evli, S., Dabanca, M. B., Başbülbül, G., Uygun, M., & Uygun, D. A. (2019). Bacteria killer enzyme attached magnetic nanoparticles. Materials Science and Engineering: C, 94, 558–564.

    Article  CAS  Google Scholar 

  12. Bayramoğlu, G., & Arıca, M. Y. (2002). Procion Green H-4G immobilized on a new IPN hydrogel membrane composed of poly (2-hydroxyethylmethacrylate)/chitosan: preparation and its application to the adsorption of lysozyme. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 202(1), 41–52.

    Article  Google Scholar 

  13. Wongchuphan, R., Tey, B. T., Tan, W. S., Taip, F. S., Kamal, S. M. M., & Ling, T. C. (2009). Application of dye-ligands affinity adsorbent in capturing of rabbit immunoglobulin G. Biochemical Engineering Journal, 45(3), 232–238.

    Article  CAS  Google Scholar 

  14. Bayramoglu, G., Oktem, H. A., & Arica, M. Y. (2007). A dye–ligand immobilized poly (2-hydroxyethylmethacrylate) membrane used for adsorption and isolation of immunoglobulin G. Biochemical Engineering Journal, 34(2), 147–155.

    Article  CAS  Google Scholar 

  15. Jain, E., & Kumar, A. (2009). Designing supermacroporous cryogels based on polyacrylonitrile and a polyacrylamide-chitosan semi-interpenetrating network. Journal of Biomaterials Science. Polymer Edition, 20(7-8), 877–902.

    Article  CAS  Google Scholar 

  16. Uygun, D. A., Akduman, B., Uygun, M., Akgöl, S., & Denizli, A. (2012). Purification of papain using Reactive Green 5 attached supermacroporous monolithic cryogel. Applied Biochemistry and Biotechnology, 167(3), 552–563.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  18. Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry, 195(1), 133–140.

    CAS  Google Scholar 

  19. Tüzmen, N., Kalburcu, T., & Denizli, A. (2012). Immobilization of catalase via adsorption onto metal-chelated affinity cryogels. Process Biochemistry, 47(1), 26–33.

    Article  Google Scholar 

  20. Bayramoglu, G., Karagoz, B., Yilmaz, M., Bicak, N., & Arica, M. Y. (2011). Immobilization of catalase via adsorption on poly (styrene-d-glycidylmethacrylate) grafted and tetraethyldiethylenetriamine ligand attached microbeads. Bioresource Technology, 102(4), 3653–3661.

    Article  CAS  Google Scholar 

  21. Inanan, T., Tüzmen, N., & Karipcin, F. (2018). Oxime-functionalized cryogel disks for catalase immobilization. International Journal of Biological Macromolecules, 114, 812–820.

    Article  CAS  Google Scholar 

  22. Yılmaz, F., Bereli, N., Yavuz, H., & Denizli, A. (2009). Supermacroporous hydrophobic affinity cryogels for protein chromatography. Biochemical Engineering Journal, 43(3), 272–279.

    Article  Google Scholar 

  23. Uygun, M., Akduman, B., Akgöl, S., & Denizli, A. (2013). A new metal-chelated cryogel for reversible immobilization of urease. Applied Biochemistry and Biotechnology, 170(8), 1815–1826.

    Article  CAS  Google Scholar 

  24. Ratanasumawong, S., Hagiwara, T., & Sakiyama, T. (2015). Effect of sodium chloride on the adsorption of proteins from pink shrimp (Pandalus eous) onto stainless steel surfaces. Food Science and Technology Research, 21(3), 327–331.

    Article  CAS  Google Scholar 

  25. Göktürk, I., & Perçin, I. (2016). Catalase purification from rat liver with iron-chelated poly (hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) cryogel discs. Prep Biochem Biotech., 46(6), 602–609.

    Article  Google Scholar 

  26. Zhu, X., & Alexandratos, S. D. (2005). Polystyrene-supported amines: affinity for mercury (II) as a function of the pendant groups and the Hg (II) counterion. Industrial and Engineering Chemistry Research, 44(23), 8605–8610.

    Article  CAS  Google Scholar 

  27. Tehrani, H. S., & Moosavi-Movahedi, A. A. (2018). Catalase and its mysteries. Progress in Biophysics and Molecular Biology., 140, 5–12.

    Article  Google Scholar 

  28. Kaushal, J., Singh, G., & Arya, S. K. (2018). Immobilization of catalase onto chitosan and chitosan–bentonite complex: a comparative study. Biotechnology Reports., 18, e00258.

    Article  Google Scholar 

  29. Doğaç, Y. I., Çinar, M., & Teke, M. (2015). Improving of catalase stability properties by encapsulation in alginate/Fe3O4 magnetic composite beads for enzymatic removal of H2O2. Preparative Biochemistry & Biotechnology., 45(2), 144–157.

    Article  Google Scholar 

  30. Rogalski, J., Szczodrak, J., Pleszczyńska, M., & Fiedurek, J. (1997). Immobilisation and kinetics of Penicillium notatum dextranase on controlled porous glass. Journal of Molecular Catalysis B: Enzymatic, 3(6), 271–283.

    Article  CAS  Google Scholar 

  31. Bayramoglu, G., Salih, B., Akbulut, A., & Arica, M. Y. (2019). Biodegradation of Cibacron Blue 3GA by insolubilized laccase and identification of enzymatic byproduct using MALDI-ToF-MS: toxicity assessment studies by Daphnia magna and Chlorella vulgaris. Ecotoxicology and Environmental Safety., 170, 453–460.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rukiye Yavaşer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Reactive Green 5 bearing polyacrylamide/chitosan cryogel was synthesized by attaching the dye via nucleophilic substitution.

• Structural characterization of cryogel was carried out by FTIR, SEM, EDX, BET, and swelling test.

• Catalase enzyme was immobilized onto Reactive Green 5 bearing polyacrylamide/chitosan cryogel by adsorption, and conditions for maximum adsorption were determined.

• Kinetic properties of free and immobilized catalase enzymes were evaluated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavaşer, R., Karagözler, A.A. Reactive Green 5–Decorated Polyacrylamide/Chitosan Cryogel: An Affinity Matrix for Catalase. Appl Biochem Biotechnol 192, 1191–1206 (2020). https://doi.org/10.1007/s12010-020-03393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03393-9

Keywords

Navigation