Skip to main content
Log in

In Silico and In Vitro Analyses of Glucosamine and Indole Acetaldehyde Inhibit Pathogenic Regulator Gene phcA of Ralstonia solanacearum, a Causative Agent of Bacterial Wilt of Tomato

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, medicinal plant (Solanum surattense)-associated bacteria were isolated and their extracellular secondary metabolites were extracted. Dual-plate application of crude secondary metabolites proved that SSL2I and SSL5 had a good inhibitory activity against Ralstonia solanacearum. These biocontrol bacteria were identified as Bacillus subtilis and Bacillus velezensis by 16S rRNA gene sequencing analysis. The crude extracts of secondary metabolites were identified based on high-resolution liquid chromatography/mass spectrometry (HR-LCMS) analysis. On the basis of HR-LCMS analysis, we selected the compounds such as glucosamine and indole acetaldehyde for in silico analysis and inhibition of pathogenic gene of phcA from R. solanacearum. The specificity of identified pathogenic gene of R. solanacearum and its cytoplasmic localization were identified by BLASTP and PSORTB bioinformatics tools. The protein–protein interaction between the identified secondary metabolites and pathogenic gene revealed that the compound had antagonistic potential against pathogenic gene of phcA. Furthermore, the synthetic forms of the above metabolites showed that both the compounds had the ability to inhibit R. solanacearum under in vitro condition. On the basis of in silico and in vitro analyses, it was concluded that medicinal plant-associated Bacillus spp. could be used as a biocontrol agent in managing wilt disease caused by R. solanacearum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Poueymiro, M., Cazale, A. C., Francois, J. M., Parrou, J. L., Peeters, N., & Genin, A. (2014). Ralstonia solanacearum type III effector directs the production of the plant signal metabolite trehalose-6-phosphate. MBio, 5, e02065–e02014.

    Article  CAS  Google Scholar 

  2. Coutinho, T. A., & Wingfield, M. J. (2017). Ralstonia solanacearum and R. pseudosolanacearum on eucalyptus: opportunists or primary pathogens? Frontiers in Plant Science, 8, 761.

    Article  Google Scholar 

  3. Yuliar, Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments, 30(1), 1–11.

    Article  CAS  Google Scholar 

  4. Meng, F., Babujee, L., Jacobs, J. M., & Allen, C. (2015). Comparative transcriptome analysis reveals cool virulence factors of Ralstonia solanacearum race 3 biovar 2. PLoS One, 10(10), e0139090.

    Article  Google Scholar 

  5. Yang, L., Li, S., Qin, X., Jiang, G., Chen, J., Li, B., Yao, X., Liang, P., Zhang, Y., & Ding, W. (2017). Exposure to umbelliferone reduces Ralstonia solanacearum biofilm formation, transcription of type III secretion system regulators and effectors and virulence on tobacco. Frontiers in Microbiology, 8, 1234.

    Article  Google Scholar 

  6. Khokhani, D., Lowe-Power, T. M., Tran, T. M., & Allen, C. (2017). A single regulator mediates strategic switching between attachment/spread and growth/virulence in the plant pathogen Ralstonia solanacearum. MBio, 8, e00895–e00817.

    Article  CAS  Google Scholar 

  7. Huang, J., Yindeeyoungyeon, W., Garg, R. P., Denny, T. P., & Schell, M. A. (1998). Joint transcriptional control of XpsR, the unusual signal integrator of the Ralstonia solanacearum virulence gene regulatory network, by a response regulator and a LysR-type transcriptional activator. Journal of Bacteriology, 180(10), 2736–2743.

    Article  CAS  Google Scholar 

  8. Ravindra, M., & Vijay Kumar, S. (2008). Evaluation of antifungal property of medicinal plants. Journal of Phytological Research, 21, 139–142.

    Google Scholar 

  9. Li, H., Guan, Y., Dong, Y., Zhao, L., Rong, S., Chen, W., Lv, M., Xu, H., Gao, X., Chen, R., & Li, L. (2018). Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. PLoS One, 13(10), e0203505.

    Article  Google Scholar 

  10. Mohamad, A., Abdalla, O., Li, L., Ma, J., Hatab, S. R., Xu, L., Guo, J. W., Rasulov, B. A., Liu, Y. H., Hedlund, B. P., & Li, W. J. (2018). Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahlia. Frontiers in Microbiology, 9, 924.

    Article  Google Scholar 

  11. Kaki, A. A., Chaouche, N. K., Dehimat, L., Milet, A., Youcef-Ali, M., Ongena, M., & Thonart, P. (2013). Biocontrol and plant growth promotion characterization of Bacillus species isolated from Calendula officinalis rhizosphere. Indian Journal of Microbiology, 53(4), 447–452.

    Article  Google Scholar 

  12. Ausubel, F. M., Brent, R., Robert, E., Kingston Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1992). Current protocols in molecular biology. New York: Greene Publishing Association Wiley-Interscience.

    Google Scholar 

  13. Yasmin, S., Hafeez, F. Y., Mirza, M. S., Rasul, M., Arshad, H. M., Zubair, M., & Iqbal, M. (2017). Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Frontiers in Microbiology, 8, 1895.

    Article  Google Scholar 

  14. Priyanka, S. R., Jinal, H. N., & Amaresan, N. (2018). Diversity and antimicrobial activity of plant associated bacteria from selected medicinal plants in Kutch, Dhinodhar hill, Gujarat. National Academy Science Letters, 41(3), 137–139.

    Article  CAS  Google Scholar 

  15. Jinal, H. N., & Amaresan, N. (2019). Characterization of medicinal plant-associated biocontrol Bacillus subtilis (SSL2) by liquid chromatography-mass spectrometry and evaluation of compounds by in silico and in vitro methods. Journal of Biomolecular Structure and Dynamics, 38(2), 500–510. https://doi.org/10.1080/07391102.2019.1581091.

    Article  CAS  PubMed  Google Scholar 

  16. Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., Foster, L. J., & Brinkman, F. S. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 26(13), 1608–1615.

    Article  CAS  Google Scholar 

  17. Munikumar, M., Priyadarshini, I. V., Pradhan, D., Sandeep, S., Umamaheswari, A., & Vengamma, B. (2012). In silico identification of common putative drug targets among the pathogens of bacterial meningitis. Biochemistry and Analytical Biochemistry, 1, 123.

    Article  Google Scholar 

  18. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    Article  CAS  Google Scholar 

  19. Reddy, K. K., Singh, S. K., Tripathi, S. K., Selvaraj, C., & Suryanarayanan, V. (2013). Shape and pharmacophore-based virtual screening to identify potential cytochrome P450 sterol 14α-demethylase inhibitors. Journal of Receptors and Signal Transduction, 33(4), 234–243.

    Article  CAS  Google Scholar 

  20. Selvaraj, C., Krishnasamy, G., Jagtap, S. S., Patel, S. K., Dhiman, S. S., Kim, T. S., Singh, S. K., & Lee, J. K. (2016). Structural insights into the binding mode of d-sorbitol with sorbitol dehydrogenase using QM-polarized ligand docking and molecular dynamics simulations. Biochemical Engineering Journal, 114, 244–256.

    Article  CAS  Google Scholar 

  21. Singh, G., & Singh, V. (2018). Functional elucidation of hypothetical proteins for their indispensable roles toward drug designing targets from Helicobacter pylori strain HPAG1. Journal of Biomolecular Structure Dynamics, 36(4), 906–918.

    Article  CAS  Google Scholar 

  22. Selvaraj, C., Sivakamavalli, J., Vaseeharan, B., Singh, P., & Singh, S. K. (2014). Examine the characterization of biofilm formation and inhibition by targeting SrtA mechanism in Bacillus subtilis: a combined experimental and theoretical study. Journal of Molecular Modeling, 20(8), 2364–2368.

    Article  Google Scholar 

  23. Karlsson, E., Shin, J. H., Westman, G., Eriksson, L. A., Olsson, L., & Mapelli, V. (2018). In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid – Important steps towards biobased production of adipic acid. PLoS One, 13(2), e0193503.

    Article  Google Scholar 

  24. Qin, C., Tao, J., Liu, T., Liu, Y., Xiao, N., Li, T., Gu, Y., Yin, H., & Meng, D. (2019). Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents. AMB Express, 9(1), 42.

    Article  Google Scholar 

  25. Zhao, Z., Wang, Q., Wang, K., Brian, K., Liu, C., & Gu, Y. (2010). Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresource Technology, 101(1), 292–297.

    Article  CAS  Google Scholar 

  26. Dimkić, Zivkovic, S., Beric, T., Ivanovic, Z., Gavrilovic, V., Stankovic, S., & Fira, D. (2013). Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biological Control, 65(3), 312–321.

    Article  Google Scholar 

  27. Tiwari, S., Jamal, S. B., Hassan, S. S., Carvalho, P. V., Almeida, S., Barh, D., Ghosh, P., Silva, A., Castro, T. L., & Azevedo, V. (2017). Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Frontiers in Microbiology, 8, 878.

    Google Scholar 

  28. Schaefers, M. M., Liao, T. L., Boisvert, N. M., Roux, D., Yoder-Himes, D., & Priebe, G. P. (2017). An oxygen-sensing two-component system in the Burkholderia cepacia complex regulates biofilm, intracellular invasion, and pathogenicity. PLoS Pathogens, 13(1), e1006116.

    Article  Google Scholar 

  29. Genin, S., & Denny, T. P. (2012). Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology, 50(1), 67–89.

    Article  CAS  Google Scholar 

  30. Genin, S., & Boucher, C. (2002). Ralstonia solanacearum: secrets of a major pathogen unveiled by analysis of its genome. Molecular Plant Pathology, 3(3), 111–118.

    Article  Google Scholar 

  31. Liu, H., Zhang, S., Schell, M. A., & Denny, T. P. (2005). Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Molecular Plant-Microbe Interaction, 18(12), 1296–1305.

    Article  CAS  Google Scholar 

  32. Acharya, A., & Garg, L. C. (2016). Drug target identification and prioritization for treatment of ovine foot rot: an in silico approach. International Journal of Genomics. https://doi.org/10.1155/2016/7361361.

  33. Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 5(8), e12029.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the management of UTU and Director, CGBIBT for support and providing facility to carry out the work. The authors are also grateful to IIT Bombay—SAIF for high-resolution LC-MS analysis studies.

Funding

This study received financial support from the B. U. Patel Doctoral Fellowship Scheme, Uka Tarsadia University (UTU), Bardoli, Gujarat, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natrajan Amaresan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinal, H.N., Amaresan, N. In Silico and In Vitro Analyses of Glucosamine and Indole Acetaldehyde Inhibit Pathogenic Regulator Gene phcA of Ralstonia solanacearum, a Causative Agent of Bacterial Wilt of Tomato. Appl Biochem Biotechnol 192, 230–242 (2020). https://doi.org/10.1007/s12010-020-03328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03328-4

Keywords

Navigation