Skip to main content

Advertisement

Log in

Stabilization of Glycosylated β-Glucosidase by Intramolecular Crosslinking Between Oxidized Glycosidic Chains and Lysine Residues

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Many industrial enzymes can be highly glycosylated, including the β-glucosidase enzymes. Although glycosylation plays an important role in many biological processes, such chains can cause problems in the multipoint immobilization techniques of the enzymes, since the glycosylated chains can cover the reactive groups of the protein (e.g., Lys) and do not allow those groups to react with reactive groups of the support (e.g., aldehyde and epoxy groups). Nevertheless, the activated glycosylated chains can be used as excellent crosslinking agents. The glycosylated chains when oxidized with periodate can generate aldehyde groups capable of reacting with the amino groups of the protein itself. Such intramolecular crosslinks may have significant stabilizing effects. In this study, we investigated if the intramolecular crosslinking occurs in the oxidized β-glucosidase and its effect on the stability of the enzyme. For this, the oxidation of glycosidic chains of β-glucosidase was carried out, allowing to demonstrate the formation of aldehyde groups and subsequent interaction with the amine groups and to verify the stability of the different forms of free enzyme (glycosylated and oxidized). Furthermore, we verified the influence of the glycosidic chains on the immobilization of β-glucosidase from Aspergillus niger and on the consequent stabilization. The results suggest that intramolecular crosslinking occurred and consequently the oxidized enzyme showed a much greater stabilization than the native enzyme (glycosylated). When the multipoint immobilization was performed in amino-epoxy-agarose supports, the stabilization of the oxidized enzyme increases by a 6-fold factor. The overall stabilization strategy was capable to promote an enzyme stabilization of 120-fold regarding to the soluble unmodified enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farinas, C. S., Marconcini, J. M., & Mattoso, L. H. C. (2018). Enzymatic conversion of sugarcane lignocellulosic biomass as a platform for the production of ethanol, enzymes and nanocellulose. Journal of Renewable Materials, 6(2), 203–216.

  2. Freitas, J. V., Ruotolo, L. A. M., & Farinas, C. S. (2019). Adsorption of inhibitors using a CO2-activated sugarcane bagasse fly ash for improving enzymatic hydrolysis and alcoholic fermentation in biorefineries. Fuel, 251, 1–9.

    Article  CAS  Google Scholar 

  3. Bhattacharya, A. S., Bhattacharya, A., & Pletschke, B. I. (2015). Synergism of fungal and bacterial cellulases and hemicellulases: A novel perspective for enhanced bio-ethanol production. Biotechnology Letters, 37(6), 1117–1129.

    Article  CAS  Google Scholar 

  4. Satyamurthy, P., Jain, P., Karande, V. S., & Nadanathangam, V. (2016). Nanocellulose induces cellulase production in Trichoderma reesei. Process Biochemistry, 51(10), 1452–1457.

    Article  CAS  Google Scholar 

  5. Prasanna, H. N., Ramanjaneyulu, G., & Reddy, B. R. (2016). Optimization of cellulase production by Penicillium sp. 3 Biotech, 162, 1–11.

    Google Scholar 

  6. Paramjeet, S., Manasa, P., & Korrapati, N. (2018). Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. Biocatalysis and Agricultural Biotechnology, 14, 57–71.

    Article  Google Scholar 

  7. Das, A., Paul, T., Ghosh, P., Halder, S. K., Mohapatra, P. K., Pati, B. R., & Mondal, K. C. (2015). Kinetic study of a glucose tolerant β-Glucosidase from Aspergillus fumigatus ABK9 entrapped into alginate beads. Waste and Biomass Valorization, 6, 53–61.

    Article  Google Scholar 

  8. Agirre, J., Ariza, A., Offen, W. A., Turkenburg, J. P., Roberts, S. M., McNicholas, S., Harris, P. V., McBrayer, B., Dohnalek, J., Cowtan, K. D., Davies, G. J., & Wilson, K. S. (2016). Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. family GH3 b-D-glucosidases. Acta Cryst, D72, 254–265.

    Google Scholar 

  9. Zahoor, S., Javed, M. M., Aftab, S., Latif, F., & Haq, I. (2011). Metabolic engineering and thermodynamic characterization of an extracellular β-glucosidase produced by Aspergillus niger. African Journal of Biotechnology, 10(41), 8107–8116.

    Article  CAS  Google Scholar 

  10. Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203.

    Article  CAS  Google Scholar 

  11. Goetting, P. (2016). Effects of glycosylation on the enzymatic activity and mechanisms of proteases. International Journal of Molecular Sciences, 17(12). https://doi.org/10.3390/ijms17121969.

  12. Zhou, F., Olman, V., & Xu, Y. (2009). Large-scale analyses of glycosylation in cellulases. Genomics, Proteomics & Bioinformatics, 7(4), 194–199. https://doi.org/10.1016/S1672-0229(08)60049-2.

    Article  CAS  Google Scholar 

  13. Beckham, G., Dai, Z., Mathews, J. F., Momany, M., Payne, C. M., Adney, W. S., Baker, S. E., & Himmel, M. E. (2012). Harnessing glycosylation to improve cellulase activity. Current Opinion in Biotechnology, 23(3), 338–345.

    Article  CAS  Google Scholar 

  14. Hayashida, S., & Yoshioka, H. (1980). The role of carbohydrate moiety on thermostability of cellulases from Humicola insolens YH-8. Agricultural and Biological Chemistry, 44(3), 481–487.

  15. Jeoh, T., Michener, W., Himmel, M. E., Decker, S. R., & Adney, W. S. (2008). Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnology for Biofuels, 1(1), 10. https://doi.org/10.1186/1754-6834-1-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gusakov, A. V., Dotsenko, A. S., Rozhkova, A. M., & Sinitsyn, A. P. (2017). N-linked glycans are an important component of the processive machinery of cellobiohydrolases. Biochimie, 132, 102–108.

    Article  CAS  Google Scholar 

  17. Somera, A. F., Pereira, M. G., Guimarães, L. H. S., Polizeli, M. L. T. M., Terenzi, H. F., Furriel, R. P. M., & Jorge, J. A. (2009). Effect of glycosylation on the biochemical properties of β-xylosidases from Aspergillus versicolor. Journal of Microbiology, 47(3), 270–276.

    Article  CAS  Google Scholar 

  18. Vieira, M. F., Vieira, A. M. S., Zanin, G. M., Tardioli, P. W., Mateo, C., & Guisán, J. M. (2011). β-Glucosidase immobilized and stabilized on agarose matrix functionalized with distinct reactive groups. Journal of Molecular Catalysis B: Enzymatic, 69(1-2), 47–53.

    Article  CAS  Google Scholar 

  19. Borges, D. G., Baraldo Junior, A., Farinas, C. S., Giordano, R. L. C., & Tardioli, P. W. (2014). Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase. Bioresource Technology, 167, 206–213.

    Article  CAS  Google Scholar 

  20. Torchilin, V. P., & Martinek, K. (1979). Enzyme stabilization without carriers. Enzyme and Microbial Technology, 1(2), 74–82.

    Article  CAS  Google Scholar 

  21. Fernandez-Lafuente, R., Rosell, C. M., Rodriguez, V., & Guisan, J. M. (1995). Strategies for enzyme stabilization by intramolecular crosslinking with bifuncional reagents. Enzyme and Microbial Technology, 17(6), 517–523.

    Article  CAS  Google Scholar 

  22. Tatsumoto, K., Oh, K. K., Baker, J. O., & Himmel, M. E. (1989). Enhanced stability of glucoamylase through chemical crosslinking. Applied Biochemistry and Biotechnology, 20, 293–308.

    Article  Google Scholar 

  23. Wong, S. S., & Wong, L. C. (1992). Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme and Microbial Technology, 14(11), 866–874.

    Article  CAS  Google Scholar 

  24. Torchilin, V. P., Maksimenko, A. V., Smirnov, V. N., Berezin, I. V., Klibanov, A. M., & Martinek, K. (1978). The principles of enzyme stabilization III *. The effect of the length of intra-molecular cross-linkages on thermostability of enzymes. Biochimica et Biophysica Acta, 522, 277–283.

    Article  CAS  Google Scholar 

  25. Torchilin, V. P., Maksimenko, A. V., Smirnov, V. N., Berezin, I. V., & Martinek, K. (1979). Principles of enzyme stabilization V. The possibility of enzyme selfstabilization under the action of potentially reversible intramolecular cross-linkages of different length. Biochimica et Biophysica Acta, 568, 1–10.

    Article  CAS  Google Scholar 

  26. Silva, T. M., Pessela, B. C., da Silva, J. C. R., Lima, M. S., Jorge, J. A., Guisan, J. M., & Polizeli, M. L. (2014). Immobilization and high stability an extracellular β-glucosidase from Aspergillus japonicas by ionic interactions. Journal of Molecular Catalysis B: Enzymatic, 104, 95–100.

    Article  Google Scholar 

  27. Baraldo Junior, A., Borges, D. G., Tardioli, P. W., & Farinas, C. S. (2014). Characterization of 훽-glucosidase produced by Aspergillus niger under solid-state fermentation and partially purified using MANAE-Agarose. Biotechnology Research International. https://doi.org/10.1155/2014/317092.

  28. González-Pombo, P., Pérez, G., Carrau, F., Guisán, J. M., Batista-Viera, F., & Brena, B. M. (2008). One-step purification and characterization of an intracellular β-glucosidase from Metschnikowia pulcherrima. Biotechnology Letters, 30(8), 1469–1475.

    Article  Google Scholar 

  29. Mateo, C., Bolivar, J. M., Godoy, C. A., Rocha-Martin, J., Pessela, B. C., Curiel, J. A., Munoz, R., Guisan, J. M., & Fernández-Lorente, G. (2010). Improvement of enzyme properties with a two-step immobilizaton process on novel heterofunctional supports. Biomacromolecules, 11(11), 3112–3117.

    Article  CAS  Google Scholar 

  30. Tardioli, P. W., Vieira, M. F., Vieira, A. M. S., Zanin, G. M., Betancor, L., Mateo, C., Fernández-Lorente, G., & Guisán, J. M. (2011). Immobilization–stabilization of glucoamylase: Chemical modification of the enzyme surface followed by covalent attachment on highly activated glyoxyl-agarose supports. Process Biochemistry, 46(1), 409–412.

    Article  CAS  Google Scholar 

  31. Lima, M. A., Oliveira-Neto, M., Kadowaki, M. A. S., Rosseto, F. R., Prates, E. T., Squina, F. M., Leme, A. F. P., Skaf, M. S., & Polikarpov, I. (2013). Protein structure and folding: Aspergillus niger β-glucosidase has a cellulase-like tadpole molecular shape: Insights into glycoside hydrolase family 3 (GH3) β-glucosidase structure and function. The Journal of Biological Chemistry, 288(46), 32991–33005.

    Article  CAS  Google Scholar 

  32. Farinas, C. S., Loyo, M. M., Baraldo Junior, A., Tardioli, P. W., Bertucci Neto, V., & Couri, S. (2010). Finding stable celulase and xylanase: Evaluation of the synergistic effect of pH and temperature. New Biotechnology, 27(6), 810–815.

    Article  CAS  Google Scholar 

  33. Fernandez-Lorente, G., Godoy, C. A., Mendes, A. A., Lopez-Gallego, F., Grazu, V., Rivas, B., Palomo, J. M., Hermoso, J., Fernandez-Lafuente, R., & Guisan, J. M. (2008). Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Biomacromolecules, 9(9), 2553–2561.

    Article  CAS  Google Scholar 

  34. Mateo, C., Fernandez-Lorente, G., Abian, O., Fernandez-Lafuente, R., & Guisán, J. M. (2000). Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules, 1(4), 739–745.

    Article  CAS  Google Scholar 

  35. Bolivar, J. M., Mateo, C., Grazu, V., Carrascosa, A. V., Pessela, B. C., & Guisán, J. M. (2010). Heterofunctional supports for the one-step purification, immobilization and stabilization of large multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports. Process Biochemistry, 45(10), 1692–1698.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support from Research Institute of Food Science (CIAL), Embrapa Instrumentation of São Carlos, Foundation for Research Support of Espírito Santo (FAPES), and Federal University of Espírito Santo (UFES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Marina Pinotti or Jose M. Guisan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinotti, L.M., Tardioli, P.W., Farinas, C.S. et al. Stabilization of Glycosylated β-Glucosidase by Intramolecular Crosslinking Between Oxidized Glycosidic Chains and Lysine Residues. Appl Biochem Biotechnol 192, 325–337 (2020). https://doi.org/10.1007/s12010-020-03321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03321-x

Keywords

Navigation