Skip to main content
Log in

Delignification of Pinecone and Extraction of Formic Acid in the Hydrolysate Produced by Alkaline Fractionation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objectives of our research are to investigate the concept of delignification from pinecone through alkaline fractionation and then extraction of formic acid from the hydrolysate through esterification using ethanol. The pinecone is considered a promising material because of its relatively higher lignin content (35.80%) than other lignocellulosic biomass. The recovery yield of acid insoluble lignin (AIL) reached its maximum value of 79.20% at 8% NaOH, and the concentration of formic acid in the hydrolysate had its highest value under the same conditions. Moreover, the glucan content in fractionated solid remained high. The hydrolysate was subjected to esterification with ethanol under various reaction conditions for formic acid extraction, with solvent mixing ratio range: 1:1–1:4 v/v, reaction temperature range: 30–45 °C, and reaction time range: 60–100 min. Subsequently, the ethanol mixture (ethanol and ethyl formate) was recovered through distillation. The formic acid was extracted with more than 85% at mixing ratio of 1:2 and 45 °C for all reaction times. Furthermore, salt compounds composed mainly of Na and S were recovered because of its properties not soluble in ethanol solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvarez, C. E., Miranda, S., Verdín, J. L., Pérez, G. P., M., A. R., & Hernández, I. C. (2013). Alkaline pretreatment of Mexican pine residues for bioethanol production. African Journal of Biotechnology, 12(31), 4956–4965. https://doi.org/10.5897/AJB2013.12461.

    Article  Google Scholar 

  2. Ayrilmis, N., Buyuksari, U., Avci, E., & Koc, E. (2009). Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. Forest Ecology and Management, 259(1), 65–70. https://doi.org/10.1016/j.foreco.2009.09.043.

    Article  Google Scholar 

  3. Binod, P., Kuttiraja, M., Archana, M., Janu, K., Sindhu, U., Sukumaran, R., R., K., & Pandey, A. (2012). High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel., 92(1), 340–345. https://doi.org/10.1016/j.fuel.2011.07.044.

    Article  CAS  Google Scholar 

  4. Brouwer, T., Blahusiak, M., Babic, K., & Schuur, B. (2017). Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid. Separation and Purification Technology, 185, 186–195. https://doi.org/10.1016/j.seppur.2017.05.036.

    Article  CAS  Google Scholar 

  5. Cai, J., He, Y., Yu, X., Banks, S., Yang, W., Zhang, Y. X., & Bridgwater, A. V. (2017). Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 76, 309–322. https://doi.org/10.1016/j.rser.2017.03.072.

    Article  CAS  Google Scholar 

  6. Cheng, F., & Brewer, C. E. (2017). Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 72, 673–722. https://doi.org/10.1016/j.rser.2017.01.030.

    Article  CAS  Google Scholar 

  7. Choi, W., Ryu, I., Kim, H. J., S., J., & Oh, K. K. (2017). Thermo-mechanical fractionation of yellow poplar sawdust with a low reaction severity using continuous twin screw-driven reactor for high hemicellulosic sugar recovery. Bioresource Technology, 241, 63–69. https://doi.org/10.1016/j.biortech.2017.05.089.

    Article  CAS  PubMed  Google Scholar 

  8. Da Silva, E. B., Zabkova, M., Araújo, J. D., Cateto, C. A., Barreiro, M. F., Belgacem, M. N., & Rodrigues, A. E. (2009). An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chemical Engineering Research and Design, 87(9), 1276–1292.https://doi.org/10.1016/j.cherd.2009.05.008.

  9. El, H., Brosse, R., Chrusciel, N., Sanchez, L., Sannigrahi, C. P., & Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability, 94(10), 1632–1638. https://doi.org/10.1016/j.polymdegradstab.2009.07.007.

    Article  CAS  Google Scholar 

  10. Faustino, H., Gil, N., Baptista, C., & Duarte, A. P. (2010). Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors. Molecules., 15(12), 9308–9322. https://doi.org/10.3390/molecules15129308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernández-Rodríguez, J., Erdocia, X., Sánchez, C., Alriols, M. G., & Labidi, J. (2017). Lignin depolymerization for phenolic monomers production by sustainable processes. Journal of Energy Chemistry, 26(4), 622–631. https://doi.org/10.1016/j.jechem.2017.02.007.

    Article  Google Scholar 

  12. Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., & Isogai, A. (2008). Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules, 10(1), 162–165. https://doi.org/10.1021/bm801065u.

    Article  CAS  Google Scholar 

  13. Gordobil, O., Moriana, R., Zhang, L., Labidi, J., & Sevastyanova, O. (2016). Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Industrial Crops and Products, 83, 155–165. https://doi.org/10.1016/j.indcrop.2015.12.048.

    Article  CAS  Google Scholar 

  14. Gulsoy, S. K., & Ozturk, F. (2015). Kraft pulping properties of European black pine cone. Maderas. Ciencia y Tecnología, 17(4), 875–882. https://doi.org/10.4067/S0718-221X2015005000076.

    Article  CAS  Google Scholar 

  15. Harmsen, P. F., Huijgen, H., Bermudez, W. L., & Bakker, R. (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR Food & Biobased Research, 1184.

  16. Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559. https://doi.org/10.1039/C5PY00263J.

    Article  CAS  Google Scholar 

  17. Jääskeläinen, A., Liitiä, S., Mikkelson, T. A., & Tamminen, T. (2017). Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Industrial Crops and Products, 103, 51–58. https://doi.org/10.1016/j.indcrop.2017.03.039.

    Article  CAS  Google Scholar 

  18. Jeong, H., Jang, S., Hong, K., Kim, C. Y., Lee, S. H., Lee, S. Y., S., M., & Choi, I. G. (2017). Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid. Bioresource Technology, 225, 183–190. https://doi.org/10.1016/j.biortech.2016.11.063.

    Article  CAS  PubMed  Google Scholar 

  19. Karimi, K., & Taherzadeh, M. J. (2016). A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology, 200, 1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, G. H., Park, S. J., & Um, B. H. (2016). Response surface methodology for optimization of solvent extraction to recovery of acetic acid from black liquor derived from Typha latifolia pulping process. Industrial Crops and Products, 89, 34–44. https://doi.org/10.1016/j.indcrop.2016.04.056.

    Article  CAS  Google Scholar 

  21. Kim, H., Jang, Y., Hong, S. K., Choi, C. Y., J, W., & Choi, I. G. (2016). Relationship between characteristics of ethanol organosolv lignin and the productivity of phenolic monomers by solvolysis. Fuel., 186, 770–778. https://doi.org/10.1016/j.fuel.2016.09.023.

    Article  CAS  Google Scholar 

  22. Kim, S., Kwon, J., Kim, H. S., G, H., & Um, B. H. (2015). Green liquor extraction of hemicellulosic fractions and subsequent organic acid recovery from the extracts using liquid–liquid extraction. Industrial Crops and Products, 67, 395–402. https://doi.org/10.1016/j.indcrop.2015.01.040.

    Article  CAS  Google Scholar 

  23. Medina, J. D., Woiciechowski, C., Zandona Filho, A., Noseda, A., Kaur, M. D., B, S., & Soccol, C. R. (2015). Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment--a biorefinery approach. Bioresource Technology, 194, 172–178. https://doi.org/10.1016/j.biortech.2015.07.018.

    Article  CAS  PubMed  Google Scholar 

  24. Möller, M., & Schröder, U. (2013). Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses. RSC Advances, 3(44), 22253–22260. https://doi.org/10.1039/C3RA43108H.

    Article  Google Scholar 

  25. Rambabu, N., Panthapulakkal, S., Sain, M., & Dalai, A. K. (2016). Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Industrial Crops and Products, 83, 746–754. https://doi.org/10.1016/j.indcrop.2015.11.083.

    Article  CAS  Google Scholar 

  26. Singh, J., Suhag, M., & Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydrate Polymers, 117, 624–631. https://doi.org/10.1016/j.carbpol.2014.10.012.

    Article  CAS  PubMed  Google Scholar 

  27. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2005). Determination of extractives in biomass. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  28. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008a). Determination of structural carbohydrates and lignin in biomass, laboratory analytical procedure. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  29. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008b). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  30. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008c). Determination of ash in biomass. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  31. Sluiter, J., Ruiz, B., Scarlata, R. O., Sluiter, C. J., A., D., & Templeton, D. W. (2010). Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. Journal of Agricultural and Food Chemistry, 58(16), 9043–9053. https://doi.org/10.1021/jf1008023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, S., Chen, W., Tang, J., Wang, B., Cao, X., Sun, S., & Sun, R. C. (2016). Synergetic effect of dilute acid and alkali treatments on fractional application of rice straw. Biotechnology for Biofuels, 9(1), 217. https://doi.org/10.1186/s13068-016-0632-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tunc, M. S. (2008), PhD thesis, University of Maine, UK.

  34. Ucar, M. B., & Ucar, G. (2008). Lipophilic extractives and main components of black pine cones. Chemistry of Natural Compounds, 44(3), 380–383. https://doi.org/10.1007/s10600-008-9071-6.

    Article  CAS  Google Scholar 

  35. Um, B. H., Karim, M. N., & Henk, L. L. (2003). Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. In Biotechnology for Fuels and Chemicals, 105, 115–125. https://doi.org/10.1007/978-1-4612-0057-4_9.

  36. Um, B. H., Friedman, B., & van Walsum, G. P. (2011). Conditioning hardwood-derived pre-pulping extracts for use in fermentation through removal and recovery of acetic acid using trioctylphosphine oxide (TOPO). Holzforschung., 65(1), 51–58. https://doi.org/10.1515/hf.2010.115.

    Article  CAS  Google Scholar 

  37. Um, B. H., & van Walsum, G. P. (2012). Effect of Pretreatment Severity on Accumulation of Major Degradation Products from Dilute Acid Pretreated Corn Stover and Subsequent Inhibition of Enzymatic Hydrolysis of Cellulose. Applied Biochemistry and Biotechnology, 168(2), 406–420. https://doi.org/10.1007/s12010-012-9784-7.

    Article  CAS  PubMed  Google Scholar 

  38. Weingarten, R., Cho Jr., J. C., W., C., & Huber, G. W. (2010). Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 12(8), 1423–1429. https://doi.org/10.1039/C003459B.

    Article  CAS  Google Scholar 

  39. Xing, R., Qi, W., & Huber, G. W. (2011). Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy & Environmental Science, 4(6), 2193–2205. https://doi.org/10.1039/C1EE01022K.

    Article  CAS  Google Scholar 

  40. Yáñez-S, M., Matsuhiro, B., Nuñez, C., Pan, S., Hubbell, C. A., Sannigrahi, P., & Ragauskas, A. J. (2014). Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: Effect of extraction conditions on the molecular structure. Polymer Degradation and Stability, 110, 184–194. https://doi.org/10.1016/j.polymdegradstab.2014.08.026.

    Article  CAS  Google Scholar 

  41. Yang, X., Zhang, H., Zhang, Y., Zhao, H., Dong, A., Xu, D., & Wang, J. (2010). Analysis of the Essential Oils of Pine Cones ofPinus koraiensisSteb. Et Zucc. andP. sylvestrisL. from China. Journal of Essential Oil Research, 22(5), 446–448. https://doi.org/10.1080/10412905.2010.9700368.

    Article  CAS  Google Scholar 

  42. Yoo, C., Li, G., Meng, M., Pu, X. Y., & Ragauskas, A. J. (2017). Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 19(8), 2006–2016. https://doi.org/10.1039/C6GC03627A.

    Article  CAS  Google Scholar 

  43. Yoshikawa, T., Shinohara, S., Yagi, T., Ryumon, N., Nakasaka, Y., Tago, T., & Masuda, T. (2014). Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Applied Catalysis B: Environmental, 146, 289–297. https://doi.org/10.1016/j.apcatb.2013.03.010.

    Article  CAS  Google Scholar 

  44. Zhang, Z., Doherty, W. O., & O'Hara, I. (2017). Integration of Salt-Induced Phase Separation with Organosolv Pretreatment for Clean Fractionation of Lignocellulosic Biomass. ACS Sustainable Chemistry & Engineering, 5(6), 5284–5292. https://doi.org/10.1021/acssuschemeng.7b00617.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173030091900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Hwan Um.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, J.S., Um, B.H. Delignification of Pinecone and Extraction of Formic Acid in the Hydrolysate Produced by Alkaline Fractionation. Appl Biochem Biotechnol 192, 103–119 (2020). https://doi.org/10.1007/s12010-020-03311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03311-z

Keywords

Navigation