Skip to main content
Log in

Enzymatic Synthesis of β-Sitosterol Laurate by Candida rugosa Lipase AY30 in the Water/AOT/Isooctane Reverse Micelle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phytosterols are regarded as compounds able to reduce total and low-density lipoprotein cholesterol in the blood, and their esterified derivatives could help to improve the effectiveness of this function. In the present study, the water/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/isooctane reverse micelle (RM) system was set up as a reaction medium for Candida rugosa lipase AY30 (CRL AY30) to synthesize β-sitosterol laurate (β-SLE). The product was identified by TLC, FT-IR, and HPLC–APCI–QqQ–MS/MS and quantified by HPLC. Through stepwise optimization, it was found that CRL AY30 had the highest activity in the water/AOT/isooctane RM system where 50 mM PBS with a pH of 7.5 was adopted as water core to carry CRL AY30, and the proportion of [CRL AY30] (mg/mL), [water] (mM), and [AOT] (mM) was set in 3:375:25, respectively, in isooctane. After screened with single-factor experiments, the esterification reaction conditions in the CRL AY30–water/AOT/isooctane RM system were further optimized by the response surface method as follows: the mole ratio of β-sitosterol to lauric acid of 1:3.5 (25 mM β-sitosterol), the enzyme load of 18% (w/w total reactants), the reaction temperature of 47 °C, and the reaction time of 48 h. As a result, the maximum esterification rate was up to 88.12 ± 0.79%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

β-SLE:

β-Sitosterol laurate

PSE:

Phytosterol ester

RM:

Reverse micelle

Y%:

Yield rate

AY30–WAI RM:

Water/AOT/isooctane RM containing the CRL AY30

References

  1. Moreau, R. A., Whitaker, B. D., & Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, 41(6), 457–500.

    PubMed  CAS  Google Scholar 

  2. Peterson, D. (1951). Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks. Proceedings of the Society for Experimental Biology and Medicine, 78(1), 143–147.

    PubMed  CAS  Google Scholar 

  3. Pollak, O. (1953). Reduction of blood cholesterol in man. Circulation, 7(5), 702–706.

    PubMed  CAS  Google Scholar 

  4. Pollak, O. (1953). Successful prevention of experimental hypercholesteremia and cholesterol atherosclerosis in the rabbit. Circulation, 7(5), 696–701.

    PubMed  CAS  Google Scholar 

  5. Fernandes, P., & Cabral, J. (2007). Phytosterols: applications and recovery methods. Bioresource Technology, 98(12), 2335–2350.

    PubMed  CAS  Google Scholar 

  6. Qianchun, D., Pin, Z., Qingde, H., Fenghong, H., Fang, W., Mingming, Z., Xiao, Y., Qi, Z., & Chang, Z. (2011). Chemical synthesis of phytosterol esters of polyunsaturated fatty acids with ideal oxidative stability. European Journal of Lipid Science and Technology, 113, 441–449.

    Google Scholar 

  7. Richelle, M., Enslen, M., Hager, C., Groux, M., Tavazzi, I., Godin, J.-P., Berger, A., Métairon, S., Quaile, S., & Piguet-Welsch, C. (2004). Both free and esterified plant sterols reduce cholesterol absorption and the bioavailability of β-carotene and α-tocopherol in normocholesterolemic humans. The American Journal of Clinical Nutrition, 80(1), 171–177.

    PubMed  CAS  Google Scholar 

  8. Hu, L., Llibin, S., Li, J., Qi, L., Zhang, X., Yu, D., Walid, E., & Jiang, L. (2015). Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2. Bioprocess and Biosystems Engineering, 38(12), 2343–2347.

    PubMed  CAS  Google Scholar 

  9. He, W., Jia, C., Ma, Y., Yang, Y., Zhang, X., Feng, B., & Yue, L. (2010). Lipase-catalyzed synthesis of phytostanyl esters in non-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 67, 60–65.

    CAS  Google Scholar 

  10. Jiang, Z., Yu, M., Ren, L., Zhou, H., & Wei, P. (2013). Synthesis of phytosterol esters catalyzed by immobilized lipase in organic media. Chinese Journal of Catalysis, 34, 2255–2262.

    CAS  Google Scholar 

  11. Orlich, B., & Schomäcker, R. (2001). Candida rugosa lipase reactions in nonionic w/o-microemulsion with a technical surfactant. Enzyme and Microbial Technology, 28(1), 42–48.

    PubMed  CAS  Google Scholar 

  12. Kamat, S., Beckman, E. J., & Russell, A. J. (1992). Role of diffusion in nonaqueous enzymology. 1. Theory. Enzyme and Microbial Technology, 14, 265–271.

    PubMed  CAS  Google Scholar 

  13. Wang, J.-P., Chen, J.-S., & Zhao, G.-J. (2014). Steady-state and time-resolved spectroscopic investigations on the existence of stable methanol/AOT/n-heptane reverse micelles. Journal of Colloid and Interface Science, 423, 1–6.

    PubMed  CAS  Google Scholar 

  14. Carvalho, C. M., & Cabral, J. M. (2000). Reverse micelles as reaction media for lipases. Biochimie, 82(11), 1063–1085.

    PubMed  CAS  Google Scholar 

  15. Pavlidis, I. V., Gournis, D., Papadopoulos, G. K., & Stamatis, H. (2009). Lipases in water-in-ionic liquid microemulsions: structural and activity studies. Journal of Molecular Catalysis B: Enzymatic, 60, 50–56.

    CAS  Google Scholar 

  16. Xue, L., Li, Y., Zou, F., Lu, L., Zhao, Y., Huang, X., & Qu, Y. (2012). The catalytic efficiency of lipase in a novel water-in-[Bmim][PF6] microemulsion stabilized by both AOT and Triton X-100. Colloids and Surfaces. B, Biointerfaces, 92, 360–366.

    PubMed  CAS  Google Scholar 

  17. Cheng, C., Jiang, T., Wu, Y., Cui, L., Qin, S., & He, B. (2018). Elucidation of lid open and orientation of lipase activated in interfacial activation by amphiphilic environment. International Journal of Biological Macromolecules, 119, 1211–1217.

    PubMed  CAS  Google Scholar 

  18. Naoe, K., Ohsa, T., Kawagoe, M., & Imai, M. (2001). Esterification by Rhizopus delemar lipase in organic solvent using sugar ester reverse micelles. Biochemical Engineering Journal, 9, 67–72.

    CAS  Google Scholar 

  19. Nagayama, K., Matsu-ura, S.-I., Doi, T., & Imai, M. (1998). Kinetic characterization of esterification catalyzed by Rhizopus delemar lipase in lecithin-AOT microemulsion systems. Journal of Molecular Catalysis B: Enzymatic, 4, 25–32.

    CAS  Google Scholar 

  20. Katan, M. B., Grundy, S. M., Jones, P., Law, M., Miettinen, T., Paoletti, R., & Participants, S. W. (2003). Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clinic Proceedings, 78, 965–978 Elsevier.

    PubMed  CAS  Google Scholar 

  21. Zeng, C., Qi, S., Li, Z., Luo, R., Yang, B., & Wang, Y. (2015). Enzymatic synthesis of phytosterol esters catalyzed by Candida rugosa lipase in water-in-[Bmim] PF6 microemulsion. Bioprocess and Biosystems Engineering, 38(5), 939–946.

    PubMed  CAS  Google Scholar 

  22. Biasutti, M. A., Abuin, E. B., Silber, J. J., Correa, N. M., & Lissi, E. A. (2008). Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Advances in Colloid and Interface Science, 136(1-2), 1–24.

    PubMed  CAS  Google Scholar 

  23. Lemyre, J.-L., Lamarre, S. b., Beaupré, A., & Ritcey, A. M. (2010). A new approach for the characterization of reverse micellar systems by dynamic light scattering. Langmuir, 26(13), 10524–10531.

    PubMed  CAS  Google Scholar 

  24. Marangoni, A. G. (1993). Effects of the interaction of porcine pancreatic lipase with AOT/isooctane reverse micelles on enzyme structure and function follow predictable patterns. Enzyme and Microbial Technology, 15(11), 944–949.

    PubMed  CAS  Google Scholar 

  25. Wang, H., Jia, C., Xia, X., Karangwa, E., & Zhang, X. (2018). Enzymatic synthesis of phytosteryl lipoate and its antioxidant properties. Food Chemistry, 240, 736–742.

    PubMed  CAS  Google Scholar 

  26. Zou, X.-G., Hu, J.-N., Zhao, M.-L., Zhu, X.-M., Li, H.-Y., Liu, X.-R., Liu, R., & Deng, Z.-Y. (2014). Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids. Journal of Agricultural and Food Chemistry, 62(43), 10594–10603.

    PubMed  CAS  Google Scholar 

  27. Reis, P., Holmberg, K., Watzke, H., Leser, M., & Miller, R. (2009). Lipases at interfaces: a review. Advances in Colloid and Interface Science, 147, 237–250.

    PubMed  Google Scholar 

  28. Yamada, Y., Kuboi, R., & Komasawa, I. (1993). Increased activity of Chromobacterium viscosum lipase in aerosol OT reverse micelles in the presence of nonionic surfactants. Biotechnology Progress, 9(5), 468–472.

    PubMed  CAS  Google Scholar 

  29. Hayes, D. G., & Gulari, E. (1990). Esterification reactions of lipase in reverse micelles. Biotechnology and Bioengineering, 35(8), 793–801.

    PubMed  CAS  Google Scholar 

  30. Correa, N. M., Silber, J. J., Riter, R. E., & Levinger, N. E. (2012). Nonaqueous polar solvents in reverse micelle systems. Chemical Reviews, 112(8), 4569–4602.

    PubMed  CAS  Google Scholar 

  31. Moyano, F., Setien, E., Silber, J. J., & Correa, N. M. (2013). Enzymatic hydrolysis of N-benzoyl-l-tyrosine p-nitroanilide by α-chymotrypsin in DMSO-water/AOT/n-heptane reverse micelles. A unique interfacial effect on the enzymatic activity. Langmuir, 29(26), 8245–8254.

    PubMed  CAS  Google Scholar 

  32. Gao, Y. a., Zhang, J., Xu, H., Zhao, X., Zheng, L., Li, X., & Yu, L. (2006). Structural studies of 1-Butyl-3-methylimidazolium tetrafluoroborate/TX-100/p-xylene ionic liquid microemulsions. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 7(7), 1554–1561.

    PubMed  CAS  Google Scholar 

  33. Avramiotis, S., Stamatis, H., Kolisis, F. N., Lianos, P., & Xenakis, A. (1996). Structural studies of lecithin- and AOT-based water-in-oil microemulsions, in the presence of lipase. Langmuir, 12, 6320–6325.

    CAS  Google Scholar 

  34. Pavlenko, I. M., Kuptsova, O. S., Klyachko, N. L., & Levashov, A. V. (2002). The lipase/lipoxygenase bienzyme system in AOT reversed micelles in octane. Russian Journal of Bioorganic Chemistry, 28, 44–49.

    CAS  Google Scholar 

  35. Ulbert, O., Fráter, T., Bélafi-Bakó, K., & Gubicza, L. (2004). Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents. Journal of Molecular Catalysis B: Enzymatic, 31, 39–45.

    CAS  Google Scholar 

  36. Hossain, M. J., Takeyama, T., Hayashi, Y., Kawanishi, T., Shimizu, N., & Nakamura, R. (1999). Enzymatic activity of Chromobacterium viscosum lipase in an AOT/Tween 85 mixed reverse micellar system. Journal of Chemical Technology & Biotechnology, 74, 423–428.

    CAS  Google Scholar 

  37. Katiyar, M., & Ali, A. (2012). Immobilization of Candida rugosa lipase on MCM-41 for the transesterification of cotton seed oil. Journal of Oleo Science, 61(9), 469–475.

    PubMed  CAS  Google Scholar 

  38. Cabrera-Padilla, R. Y., Lisboa, M. C., Pereira, M. M., Figueiredo, R. T., Franceschi, E., Fricks, A. T., Lima, A. S., Silva, D. P., & Soares, C. M. (2015). Immobilization of Candida rugosa lipase onto an eco-friendly support in the presence of ionic liquid. Bioprocess and Biosystems Engineering, 38(5), 805–814.

    PubMed  CAS  Google Scholar 

  39. Li, Y., Ruan, Z., Zheng, M., Deng, Q., Zhang, S., Zheng, C., Tang, H., Huang, F., & Shi, J. (2018). Candida rugosa lipase covalently immobilized on facilely-synthesized carbon nitride nanosheets as a novel biocatalyst. RSC Advances, 8, 14229–14236.

    CAS  Google Scholar 

  40. Miletić, N., Abetz, V., Ebert, K., & Loos, K. (2010). Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromolecular Rapid Communications, 31(1), 71–74.

    PubMed  Google Scholar 

  41. Brzozowski, A., Derewenda, U., Derewenda, Z., Dodson, G., Lawson, D., Turkenburg, J., Bjorkling, F., Huge-Jensen, B., Patkar, S., & Thim, L. (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351, 491.

    PubMed  CAS  Google Scholar 

  42. Choi, N., Kim, H., Kim, B. H., Lee, J., & Kim, I.-H. (2017). Production of phytosteryl ester from echium oil in a recirculating packed bed reactor using an immobilized lipase. Journal of Oleo Science, 66(12), 1329–1335.

    PubMed  CAS  Google Scholar 

  43. Le Chatelier, H. L. (1884). Sur un énoncé général des lois des équilibres chimiques. Comptes Rendus de l'Académie des Sciences, 99, 786–789.

    Google Scholar 

  44. Handayani, S., Putri, A. T. T., Setiasih, S. and Hudiyono, S. (2018) Enzymatic synthesis of glycerol-coconut oil fatty acid and glycerol-decanoic acid ester as emulsifier and antimicrobial agents using Candida rugosa lipase EC 3.1. 1.3. IOP Conference Series: Materials Science and Engineering, pp. 012019. IOP Publishing.

  45. Senoymak Tarakcı, M. I., & Ilgen, O. (2018). Esterification of oleic acid with methanol using Zr (SO4) 2 as a heterogeneous catalyst. Chemical Engineering & Technology, 41, 845–852.

    Google Scholar 

  46. Zheng, M., Zhu, J., Huang, F., Xiang, X., Shi, J., Deng, Q., Ma, F., & Feng, Y. (2015). Enzymatic deacidification of the rice bran oil and simultaneous preparation of phytosterol esters-enriched functional oil catalyzed by immobilized lipase arrays. RSC Advances, 5, 70073–70079.

    CAS  Google Scholar 

  47. Liu, X., Wang, L., Liu, P., An, N., Chen, G., Zhao, R. and Hang, Z. (2019) Catalytic synthesis of β-sitosterol linolenate by Pickering emulsion-immobilized lipase. E3S Web of Conferences, pp. 02019. EDP sciences.

  48. Hong, S.-C., Park, K.-M., Son, Y.-H., Jung, H.-S., Kim, K., Choi, S. J., & Chang, P.-S. (2015). AOT/isooctane reverse micelles with a microaqueous core act as protective shells for enhancing the thermal stability of Chromobacterium viscosum lipase. Food Chemistry, 179, 263–269.

    PubMed  CAS  Google Scholar 

  49. Cui, C., Guan, N., Xing, C., Chen, B., & Tan, T. (2016). Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor. Colloids and Surfaces. B, Biointerfaces, 146, 490–497.

    PubMed  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the funding support from the China National Key R&D Program during the 13th Five-year Plan Period (Grant No. 2016YFD040140402), the National Natural Science Foundation of China (Grant No. 31872890), and the Research Program of Sate Key Laboratory of Food Science and Technology in Nanchang University (Project SKLF-ZZB-201709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyuan Deng.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Li, J., Fu, Z. et al. Enzymatic Synthesis of β-Sitosterol Laurate by Candida rugosa Lipase AY30 in the Water/AOT/Isooctane Reverse Micelle. Appl Biochem Biotechnol 192, 392–414 (2020). https://doi.org/10.1007/s12010-020-03302-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03302-0

Keywords

Navigation