Skip to main content
Log in

Characterization of Denitrifying Community for Application in Reducing Nitrogen: a Comparison of nirK and nirS Gene Diversity and Abundance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Studies have shown that the addition of biochar to agricultural soils has the potential to mitigate climate change by decreasing nitrous oxide (N2O) emissions resulting from denitrification. Rice paddy field soils have been known to have strong denitrifying activity, but the response of microbes to biochar for weakening denitrification in rice paddy field soils is not well known. In this work, compared with the chemical fertilizer alone, the chemical fertilizer + 20 t hm−2 biochar fertilizer slightly decreased denitrifying the nitrite reductase activity (S-NiR) and N2O emission without statistic difference, whereas the chemical fertilizer + 40 t hm−2 biochar significantly boosted them. The abundance of nir-denitrifiers contributed to S-NiR and N2O emission, especially nirS-denitrifiers, rather than the variation of community structure. Pearson correlation analysis showed that NO2-N was a key factor for controlling the abundance of nir-denitrifiers, S-NiR and N2O emission. The biochar addition fertilization treatments strongly shaped the community structure of nirK-denitrifiers, while the community structure of nirS-denitrifiers remained relatively stable. In addition, Paracoccus and Sinorhizobium were revealed to be as the predominant lineage of nirS- and nirK-containing denitrifiers, respectively. Distance-based redundancy analysis (db-RDA) showed that changes in the nir-denitrifier community structure were significantly related to soil organic carbon, NO3-N, and total phosphorus. Our findings suggest that, although the nirS- and nirK-denitrifiers are both controlling nitrite reductase, their responses to biochar addition fertilization treatments showed significant discrepancies of diversity, abundance, and contribution to N2O and S-NiR in a paddy soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (n2o): the dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949), 123–125.

    CAS  PubMed  Google Scholar 

  2. WMO, Greenhouse Gas Bulletin. World Meterological Organization 2016. Available from: http://www.wmo.int/gaw/. Acessed June 26, 2018.

  3. Butterbachbahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeisterboltenstern, S. (2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1621), 20130122.

    Google Scholar 

  4. Kögel-Knabner, I., Amelung, W., Cao, Z. H., Fiedler, S., Frenzel, P., Jahn, R., et al. (2010). Biogeochemistry of paddy soils. Geoderma, 157(1), 1–14.

    Google Scholar 

  5. Azziz, G., Monza, J., Etchebehere, C., & Irisarri, P. (2017). Nirs- and nirk-type denitrifier communities are differentially affected by soil type, rice cultivar and water management. European Journal of Soil Biology, 78(Complete), 20–28.

    CAS  Google Scholar 

  6. Conrad, R. (2002). Control of microbial methane production in wetland rice fields. Nutrient Cycling in Agroecosystems, 64(1–2), 59–69.

    CAS  Google Scholar 

  7. Syakila, A., & Kroeze, C. (2011). The global nitrous oxide budget revisited. Greenhouse Gas Measurement & Management, 1(1), 17–26.

    CAS  Google Scholar 

  8. Ji, Y., Liu, G., Ma, J., Zhang, G., Xu, H., & Yagi, K. (2013). Effect of controlled-release fertilizer on mitigation of n2o emission from paddy field in South China: A multi-year field observation. Plant and Soil, 371(1–2), 473–486.

    CAS  Google Scholar 

  9. Krause, H. M., Hüppi, R., Leifeld, J., Elhadidi, M., Harter, J., Kappler, A., et al. (2018). Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biology & Biochemistry, 119, 143–151.

    CAS  Google Scholar 

  10. Harter, J., El-Hadidi, M., Huson, D. H., Kappler, A., & Behrens, S. (2017). Soil biochar amendment affects the diversity of nosz transcripts: Implications for n2o formation. Scientific Reports, 7(1), 3338.

    PubMed  PubMed Central  Google Scholar 

  11. Yang, S., Xiao, Y., Sun, X., Ding, J., Jiang, Z., & Xu, J. (2019). Biochar improved rice yield and mitigated ch4 and n2o emissions from paddy field under controlled irrigation in the taihu lake region of China. Atmospheric Environment, 200, 69–77.

    Google Scholar 

  12. Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1–2), 1–18.

    CAS  Google Scholar 

  13. Sohi, S. P. (2012). Agriculture. Carbon storage with benefits. Science, 338(6110), 1034–1035.

    CAS  PubMed  Google Scholar 

  14. Cayuela, M. L., Sánchez-Monedero, M. A., Roig, A., Hanley, K., Enders, A., & Lehmann, J. (2013). Biochar and denitrification in soils: when, how much and why does biochar reduce n2o emissions? Scientific Reports, 3, 1732.

    PubMed  PubMed Central  Google Scholar 

  15. Harter, J., Krause, H. M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., et al. (2014). Linking n2o emissions from biochar-amended soil to the structure and function of the n-cycling microbial community. Isme Journal Multidisciplinary Journal of Microbial Ecology, X(X), 8(3), 660–674.

    CAS  Google Scholar 

  16. Van Zwieten, L., Singh, B. P., Kimber, S. W. L., Murphy, D. V., Macdonald, L. M., Rust, J., et al. (2014). An incubation study investigating the mechanisms that impact n2o flux from soil following biochar application. Agriculture, Ecosystems & Environment, 191, 53–62.

    Google Scholar 

  17. Baggs, E. M., Smales, C. L., & Bateman, E. J. (2010). Changing ph shifts the microbial sourceas well as the magnitude of n2o emission from soil. Biology and Fertility of Soils, 46(8), 793–805.

    CAS  Google Scholar 

  18. Cuhel, J., Simek, M., Laughlin, R. J., Bru, D., Cheneby, D., Watson, C. J., et al. (2010). Insights into the effect of soil ph on n2o and n2 emissions and denitrifier community size and activity. Applied and Environmental Microbiology, 76(6), 1870–1878.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology & Biochemistry, 103, 1–15.

    CAS  Google Scholar 

  20. Clough, T., Condron, L., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy Journal, 3, 275–293.

    CAS  Google Scholar 

  21. Cayuela, M. L., Van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. A. (2014). Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment, 191, 5–16.

    CAS  Google Scholar 

  22. Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., et al. (2006). Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications, 16(6), 2064–2090.

    CAS  PubMed  Google Scholar 

  23. Braker, G., & Conrad, R. (2011). Diversity, structure, and size of n2o-producing microbial communities in soilsâ--“what matters for their functioning”? Advances in Applied Microbiology, 75, 33–70.

    CAS  PubMed  Google Scholar 

  24. Cutruzzola, F., Brown, K., Wilson, E. K., Bellelli, A., Arese, M., Tegoni, M., et al. (2001). The nitrite reductase from pseudomonas aeruginosa: Essential role of two active-site histidines in the catalytic and structural properties. Proceedings of the National Academy of Sciences, 98(5), 2232–2237.

    CAS  Google Scholar 

  25. Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones, C. M., & Hallin, S. (2010). Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME Journal, 4(5), 633–641.

    PubMed  Google Scholar 

  27. Lee, J. A., & Francis, C. A. (2017). Spatiotemporal characterization of San Francisco bay denitrifying communities: A comparison ofnirkandnirsdiversity and abundance. Microbial Ecology, 73(2), 271–284.

    CAS  PubMed  Google Scholar 

  28. Hou, S., Ai, C., Zhou, W., Liang, G., & He, P. (2018). Structure and assembly cues for rhizospheric, nirk - and, nirs -type denitrifier communities in long-term fertilized soils. Soil Biology and Biochemistry, 119, 32–40.

    CAS  Google Scholar 

  29. Yoshida, M., Ishii, S., Otsuka, S., & Senoo, K. (2009). Temporal shifts in diversity and quantity of nirs and nirk in a rice paddy field soil. Soil Biology & Biochemistry, 41(10), 2044–2051.

    CAS  Google Scholar 

  30. Yin, C., Fan, F., Song, A., Li, Z., Yu, W., & Liang, Y. (2014). Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirs- and nirk-denitrifying bacterial community. European Journal of Soil Biology, 65, 47–56.

    CAS  Google Scholar 

  31. Sanford, R. A., Wagner, D. D., Wu, Q., Chee-Sanford, J. C., Thomas, S. H., Cruz-Garcia, C., et al. (2012). Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proceedings of the National Academy of Sciences, 109(48), 19709–19714.

    CAS  Google Scholar 

  32. Dambreville, C., Hénault, C., Bizouard, F., Morvan, T., Chaussod, R., & Germon, J. C. (2006). Compared effects of long-term pig slurry applications and mineral fertilization on soil denitrification and its end products (n2o, n2). Biology and Fertility of Soils, 42(6), 490–500.

    Google Scholar 

  33. Huang, X. X., Gao, M., Wei, C. F., Xie, D. T., & Pan, G. X. (2006). Tillage effect on organic carbon in a purple paddy soil. Pedosphere, 16(5), 0–667.

    Google Scholar 

  34. Huang, R., Lan, M., Liu, J., & Gao, M. (2017). Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning. Environmental Science & Pollution Research, 24(36), 1–11.

    Google Scholar 

  35. Riya, S., Katayama, M., Takahashi, E., Zhou, S., & Terada, A. (2014). Mitigation of greenhouse gas emissions by water management in a forage rice paddy field supplemented with dry-thermophilic anaerobic digestion residue. Water, Air, & Soil Pollution, 225(9), 2118.

    Google Scholar 

  36. Hou, H., Peng, S., Xu, J., Yang, S., & Mao, Z. (2012). Seasonal variations of ch4 and n2o emissions in response to water management of paddy fields located in Southeast China. Chemosphere, 89(7), 884–892.

    CAS  PubMed  Google Scholar 

  37. Bolan, N. S., Baskaran, S., & Thiagarajan, S. (1996). An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water. Communications in Soil Science and Plant Analysis, 27(13–14), 2723–2737.

    CAS  Google Scholar 

  38. Lu, R. K. (2000). Methods of soil and A gro-chemical analysis. Beijing: China agricultural science and technology press.

    Google Scholar 

  39. Yang, J. H., Wang, C. L., & Dai, H. L. (2008). Agricultural soil analysis and environmental monitoring. Beijing: China Land Press (in Chinese).

    Google Scholar 

  40. Michotey, V., Méjean, V., & Bonin, P. (2000). Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in environmental marine samples. Applied and Environmental Microbiology, 66(4), 1564–1571.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Throback, I. N., Enwall, K., Jarvis, Å., & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 49(3), 401–417.

    CAS  PubMed  Google Scholar 

  42. Chen, Z., Luo, X., Hu, R., Wu, M., Wu, J., & Wei, W. (2010). Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology, 60(4), 850–861.

    CAS  PubMed  Google Scholar 

  43. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., van Horn, D., & Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Henry, S., Baudoin, E., López-Gutiérrez, J. C., Martin-Laurent, F., Brauman, A., & Philippot, L. (2004). Quantification of denitrifying bacteria in soils by nirk, gene targeted real-time PCR. Journal of Microbiological Methods, 59(3), 327–335.

    CAS  PubMed  Google Scholar 

  45. Culman, S. W., Bukowski, R., Gauch, H. G., Cadillo-Quiroz, H., & Buckley, D. H. (2009). T-rex: Software for the processing and analysis of t-rflp data. BMC Bioinformatics, 10(1), 171–170.

    PubMed  PubMed Central  Google Scholar 

  46. Atlas, R. M., & Bartha, R. (1987). Microbial ecology: Fundamentals and applications (2nd ed.). Menlo Park: Benjamin Cummings Publishing Co..

    Google Scholar 

  47. By Jan Lepš. (2003). Multivariate analysis of ecological data using CANOCO 5. Multivariate analysis of ecological data using CANOCO. Cambridge University Press.

  48. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Krapfl, K. J., Hatten, J. A., Roberts, S. D., Baldwin, B. S., Rousseau, R. J., & Shankle, M. W. (2014). Soil properties, nitrogen status, and switchgrass productivity in a biochar-amended silty clay loam. Soil Science Society of America Journal, 78(S1), S136.

    Google Scholar 

  50. Streubel, J. D., Collins, H. P., Garcia-Perez, M., Tarara, J., Granatstein, D., & Kruger, C. E. (2011). Influence of contrasting biochar types on five soils at increasing rates of application. Soil Science Society of America Journal, 75(4), 1402.

    CAS  Google Scholar 

  51. Diehl, D., Bayer, J. V., Woche, S. K., Bryant, R., Doerr, S. H., & Schaumann, G. E. (2010). Reaction of soil water repellency to artificially induced changes in soil ph. Geoderma, 158(3–4), 0–384.

    CAS  Google Scholar 

  52. Huang, M., Zhou, X., Chen, J., Cao, F., Jiang, L., & Zou, Y. (2017). Interaction of changes in ph and urease activity induced by biochar addition affects ammonia volatilization on an acid paddy soil following application of urea. Communications in Soil Science and Plant Analysis, 48(1), 107–112.

    CAS  Google Scholar 

  53. Silber, A., Levkovitch, I., & Graber, E. R. (2010). Ph-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environmental Science & Technology, 44(24), 9318–9323.

    CAS  Google Scholar 

  54. Zhang, A., Bian, R., Hussain, Q., Li, L., Pan, G., Zheng, J., et al. (2013). Change in net global warming potential of a rice–wheat cropping system with biochar soil amendment in a rice paddy from China. Agriculture, Ecosystems & Environment, 173, 37–45.

    Google Scholar 

  55. Saarnio, S., Heimonen, K., & Kettunen, R. (2013). Biochar addition indirectly affects n2o emissions via soil moisture and plant n uptake. Soil Biology and Biochemistry, 58, 99–106.

    CAS  Google Scholar 

  56. Case, S. D. C., Uno, H., Nakajima, Y., Jensen, L. S., & Akiyama, H. (2017). Bamboo biochar does not affect paddy soil n2o emissions or source following slurry or mineral fertilizer amendment-a 15n tracer study. Journal of Plant Nutrition and Soil Science.

  57. Knowles, R. (1982). Denitrification. Microbiological Reviews, 46(1), 43–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dong, Z., Zhu, B., Hua, K., & Jiang, Y. (2015). Soil science and plant nutrition linkage of n 2 o emissions to the abundance of soil ammonia oxidizers and denitrifiers in purple soil under long-term fertilization. Soil Science and Plant Nutrition, ahead-of-print(5), 1-9.

  59. Yang, L., Zhang, X., & Ju, X. (2017). Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Science Report, 7, 43283.

    Google Scholar 

  60. Tao, R., Wakelin, S. A., Liang, Y., Hu, B., & Chu, G. (2018). Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers. Science of the Total Environment, 612, 739–749.

    CAS  PubMed  Google Scholar 

  61. Espenberg, M., Truu, M., Mander, Ü., Kasak, K., Nõlvak, H., Ligi, T., et al. (2018). Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils. Scientific Reports, 8(1), 4742.

    PubMed  PubMed Central  Google Scholar 

  62. Dandie, C. E., Burton, D. L., Zebarth, B. J., Henderson, S. L., Trevors, J. T., & Goyer, C. (2008). Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity. Applied and Environmental Microbiology, 74(19), 5997–6005.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, Y., Uchida, Y., Shimomura, Y., Akiyama, H., & Hayatsu, M. (2017). Responses of denitrifying bacterial communities to short-term waterlogging of soils. Scientific Reports, 7(1), 803.

    PubMed  PubMed Central  Google Scholar 

  64. Chen, Y., Zhou, W., Li, Y., Zhang, J., Zeng, G., Huang, A., & Huang, J. (2014). Nitrite reductase genes as functional markers to investigate diversity of denitrifying bacteria during agricultural waste composting. Applied Microbiology and Biotechnology, 98(9), 4233–4243.

    CAS  PubMed  Google Scholar 

  65. Penton, C. R., Derek, S. L., Amanda, P., Cole, J. R., Liyou, W., Yiqi, L., et al. (2015). Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils. Frontiers in Microbiology, 6.

  66. Yang, Y. D., Hu, Y. G., Wang, Z. M., & Zeng, Z. H. (2018). Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes. Environmental Science & Pollution Research, 25(14), 14057–14067.

    CAS  Google Scholar 

  67. Lee, S. H., & Kang, H. (2015). The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem. Applied Microbiology and Biotechnology, 100(4), 1999–2010.

    PubMed  Google Scholar 

  68. Li, F., Li, M., Shi, W., Li, H., Sun, Z., & Gao, Z. (2017). Distinct distribution patterns of proteobacterial nirk- and nirs-type denitrifiers in the yellow river estuary, China. Canadian Journal of Microbiology, cjm-2017-0053.

  69. Huanhuan, W., Xu, L., Xiang, L., Xinyu, L., Jian, W., Huiwen, Z., et al. (2017). Changes of microbial population and n-cycling function genes with depth in three Chinese paddy soils. Plos one, 12(12), e0189506.

    Google Scholar 

  70. Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 1–12). London: Earthscan.

    Google Scholar 

  71. Luo, X. Q., Chen, Z., Hu, R. G., Wu, M. N., & Wei, W. X. (2010). Effect of long-term fertilization on the diversity of nitrite reductase genes (nirK and nirS) in paddy soil. Environmental Science, 31(2), 423–430 (In Chinese).

    Google Scholar 

  72. Ishii, S., Ohno, H., Tsuboi, M., Otsuka, S., & Senoo, K. (2011). Identification and isolation of active n2o reducers in rice paddy soil. The ISME Journal, 5(12), 1936–1945.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamane, & Tsuyoshi. (2013). Denitrifying bacterial community in manure compost pellets applied to an Andosol upland field. Soil Science and Plant Nutrition, 59(4), 572–579.

    Google Scholar 

  74. Medhi, K., Singhal, A., Chauhan, D. K., & Thakur, I. S. (2017). Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by, paracoccus denitrificans, ISTOD1. Bioresource Technology, 242, 334–343 S0960852417303565.

    CAS  PubMed  Google Scholar 

  75. Carlson, C. A., & Ingraham, J. L. (1983). Comparison of denitrification by pseudomonas stutzeri, pseudomonas aeruginosa, and paracoccus denitrificans. Applied and Environmental Microbiology, 45(4), 1247–1253.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Becker, A., Bergès, H., Krol, E., Bruand, C., & Batut, J. (2004). Global changes in gene expression in sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Molecular Plant-Microbe Interactions, 17(3), 292–303.

    CAS  PubMed  Google Scholar 

  77. Torres, M. J., Rubia, M. I., Bedmar, E. J., & Delgado, M. J. (2011). Denitrification in sinorhizobium meliloti. Biochemical Society Transactions, 39(6), 1886–1889.

    CAS  PubMed  Google Scholar 

  78. Wang, Y. Y., Lu, S. E., Xiang, Q. J., Yu, X. M., Zhao, K., Zhang, X. P., Tu, S. H., & Gu, Y. F. (2017). Responses of N2O reductase gene(nosZ) denitrifier communities to long term fertilization follow a depth pattern in calcareous purplish paddy soil. Journal of Integrative Agriculture, 16(11), 2597–2611.

    CAS  Google Scholar 

  79. Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C. M., Sarr, A., & Maron, P. A. (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7(8), 1609–1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Braker, G., Dörsch, P., & Bakken, L. R. (2012). Genetic characterization of denitrifier communities with contrasting intrinsic functional traits. FEMS Microbiology Ecology, 79(2), 542–554.

    CAS  PubMed  Google Scholar 

  81. He, J. Z., Zheng, Y., Chen, C. R., He, Y. Q., & Zhang, L. M. (2008). Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soil Sediments., 8, 349–358.

    CAS  Google Scholar 

  82. Hu, Y., Xia, Y., Sun, Q., Liu, K., Chen, X., Ge, T., Zhu, B., Zhu, Z., Zhang, Z., & Su, Y. (2018). Effects of long-term fertilization on, phoD-harboring bacterial community in Karst soils. Science of the Total Environment, 628-629, 53–63.

    CAS  PubMed  Google Scholar 

Download references

Funding

The present study was financially supported by the National Key Research and Development Plan of China (Grant No. 2017YFD0800101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zifang Wang or Ming Gao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qi, L., Huang, R. et al. Characterization of Denitrifying Community for Application in Reducing Nitrogen: a Comparison of nirK and nirS Gene Diversity and Abundance. Appl Biochem Biotechnol 192, 22–41 (2020). https://doi.org/10.1007/s12010-020-03250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03250-9

Keywords

Navigation