Skip to main content
Log in

Statistical Optimization for Coproduction of Chitinase and Beta 1, 4-Endoglucanase by Chitinolytic Paenibacillus elgii PB1 Having Antifungal Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A bacterial strain PB1 with antagonistic activity against pathogenic fungi was isolated from marine soil and was identified as Paenibacillus elgii based on phenotypic and genotypic characterization. The isolate showed good antifungal activity against “Aspergillus niger (MTCC 282), Trichophyton rubrum (MTCC 791), Microsporum gypseum (MTCC 2819), Candida albicans (MTCC 227), and Saccharomyces cerevisiae (MTCC 170)”. Chitinase and beta 1, 4-endoglucanase are known for their capability to degrade fungal cell wall, thus we analyzed its productivity in PB1 strain using Plackett-Burman and Central Composite Design. The factors that affect the productivity of chitinase and beta 1, 4-endoglucanase were identified and optimized. A 7.77-fold increase (3.157 to 24.53 ± 1.33 U/mL) in chitinase and 7.422-fold increase (6.476 to 48.066 ± 0.676 U/mL) in beta 1, 4-endoglucanase versus basal medium was achieved. Chitinase and beta 1, 4-endoglucanase produced by Paenibacillus elgii strain PB1 represents the new source for biotechnological, medical, and agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdel-Naby, M. A., El-Shayeb, N. M., & Sherief, A. A. (1992). Purification and some properties of chitinase from Aspergillus carneus. Applied Biochemistry and Biotechnology, 37(2), 141–154.

    Article  CAS  Google Scholar 

  2. Anuradha, V., & Revathi, K. (2013). Purification and characterization of bacterial chitinase isolated from crustacean shells. International Journal of Pure and Applied Bioscience, 1(4), 1–11.

    Google Scholar 

  3. Aounallah, M. A., Slimene-Debez, I. B., Djebali, K., Gharbi, D., Hammami, M., Azaiez, S., Limam, F., & Tabbene, O. (2017). Enhancement of exochitinase production by Bacillus licheniformis AT6 strain and improvement of N-acetylglucosamine production. Applied Biochemistry and Biotechnology, 181(2), 650–666.

    Article  CAS  Google Scholar 

  4. Bhat. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5), 355–383.

    Article  CAS  Google Scholar 

  5. Brzezinska, M. S., Jankiewicz, U., Burkowska, A., & Walczak, M. (2014). Chitinolytic microorganisms and their possible application in environmental protection. Current Microbiology, 68(1), 71–81.

    Article  Google Scholar 

  6. Budi, S. W., Van Tuinen, D., Arnould, C., Dumas-Gaudot, E., Gianinazzi-Pearson, V., & Gianinazzi, S. (2010). Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Applied Soil Ecology, 15(2), 191–199.

    Article  Google Scholar 

  7. Chang, W. T., Chen, M. L., & Wang, S. L. (2010). An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World Journal of Microbiology and Biotechnology, 26(5), 945–950.

    Article  CAS  Google Scholar 

  8. Chen, H. B., Kao, P. M., Huang, H. C., Shieh, C. J., Chen, C. I., & Liu, Y. C. (2010). Effects of using various bioreactors on chitinolytic enzymes production by Paenibacillus taichungensis. Biochemical Engineering Journal, 49(3), 337–342.

    Article  Google Scholar 

  9. Chrisnasari, R., Yasaputera, S., Christianto, P., Santoso, V. I., & Pantjajani, T. (2016). Production and characterization of chitinases from thermophilic bacteria isolated from Prataan hot spring, East Java. Journal of Mathematical and Fundamental Sciences, 48(2), 149–163.

    Article  CAS  Google Scholar 

  10. Cruz, J., Hidalgo-Gallego, A., Lora, J. M., Benitez, T., Pintor-Toro, J. A., & Lobell, A. (1992). Isolation and characterization of three chitinases from Trichoderma harzianum. European Journal of Biochemistry, 206(3), 859–867.

    Article  Google Scholar 

  11. Das, S. N., Neeraja, C., Sarma, P. V., Prakash, J. M., Purushotham, P., Kaur, M., Dutta, S., & Podile, A. R. (2012). Microbial chitinases for chitin waste management. In Microorganisms in environment management (pp. 135–150). Dordrechet: Springer.

    Chapter  Google Scholar 

  12. De Nicola, R., Hall, N., Melville, S. G., & Walker, G. M. (2009). Influence of zinc on distiller’s yeast: cellular accumulation of zinc and impact on spirit congeners. Journal of the Institute of Brewing, 115(3), 265–271.

    Article  Google Scholar 

  13. Ferreira, S., Duarte, A. P., Ribeiro, M. H., Queiroz, J. A., & Domingues, F. C. (2009). Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal, 45(3), 192–200.

    Article  CAS  Google Scholar 

  14. Ghose. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 57–268.

    Article  Google Scholar 

  15. Hsu, S. C., & Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied and Environmental Microbiology, 29(3), 422–426.

    Article  CAS  Google Scholar 

  16. Kaya, M., Baublys, V., Can, E., Šatkauskienė, I., Bitim, B., Tubelytė, V., & Baran, T. (2014). Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus). Zoomorphology, 13(3), 285–293.

    Article  Google Scholar 

  17. Kim, D. S., Bae, C. Y., Jeon, J. J., Chun, S. J., Oh, H. W., Hong, S. G., Baek, K. S., Moon, E. Y., & Bae, K. S. (2004). Paenibacillus elgii sp. nov., with broad antimicrobial activity. International Journal of Systematic and Evolutionary Microbiology, 54(6), 2031–2035.

    Article  CAS  Google Scholar 

  18. Kim, Y. H., Park, S. K., Hur, J. Y., & Kim, Y. C. (2017). Purification and characterization of a major extracellular chitinase from a biocontrol bacterium, Paenibacillus elgii HOA73. The Plant Pathology Journal, 33(3), 318–328.

    Article  CAS  Google Scholar 

  19. Kumar, M., Brar, A., Vivekanand, V., & Pareek, N. (2017). Production of chitinase from thermophilic Humicola grisea and its application in production of bioactive chitooligosaccharides. International Journal of Biological Macromolecules, 104, 1641–1647.

    Article  CAS  Google Scholar 

  20. Kumar, S. N., Jacob, J., Reshma, U. R., Rajesh, R. O., & Kumar, B. S. (2015). Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity. Frontiers in Microbiology, 6, 1167–1178.

    Article  CAS  Google Scholar 

  21. Larroque, M., Barriot, R., Bottin, A., Barre, A., Rougé, P., Dumas, B., & Gaulin, E. (2012). The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. BMC Genomics, 13(1), 605–620.

    Article  CAS  Google Scholar 

  22. Li, J., Liu, W., Luo, L., Dong, D., Liu, T., Zhang, T., Lu, C., Liu, D., Zhang, D., & Wu, H. (2015). Expression of Paenibacillus polymyxa β-1, 3-1, 4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Biological Control, 90, 141–147.

    Article  CAS  Google Scholar 

  23. Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., Qu, M., Jiang, C., & Yang, Q. (2012). Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules, 17(4), 4604–4611.

    Article  CAS  Google Scholar 

  24. Miller. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  25. Meruvu, H., & Donthireddy, S. R. R. (2014). Purification and characterization of an antifungal Chitinase from Citrobacter freundii str. Nov. haritD11. Applied Biochemistry and Biotechnology, 172(1), 196–205.

    Article  CAS  Google Scholar 

  26. Narasimhan, A., & Shivakumar, S. (2012). Optimization of chitinase produced by a biocontrol strain of Bacillus subtilis using Plackett-Burman design. European Journal of Experimental Biology, 2(4), 861–865.

    CAS  Google Scholar 

  27. Niranjane, A. P., Madhou, P., & Stevenson, T. W. (2007). The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzyme and Microbial Technology, 40(6), 1464–1468.

    Article  CAS  Google Scholar 

  28. Pal, D., Kumar, R. M., Kaur, N., Kumar, N., Kaur, G., Singh, N. K., Krishnamurthi, S., & Mayilraj, S. (2017). Bacillus maritimus sp. nov., a novel member of the genus Bacillus isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology, 67(1), 60–66.

    Article  CAS  Google Scholar 

  29. Patel, B., Gohel, V., & Raol, B. (2007). Statistical optimisation of medium components for chitinase production by Paenibacillus sabina strain JD2. Annals of Microbiology, 57(4), 589–597.

    Article  CAS  Google Scholar 

  30. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4), 305–325.

    Article  Google Scholar 

  31. Premalatha, N., Gopal, N. O., Jose, P. A., Anandham, R., & Kwon, S. W. (2015). Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Frontiers in. Microbiology., 6, 1046–1057.

    Google Scholar 

  32. Rathore, A. S., & Gupta, R. D. (2015). Chitinases from bacteria to human: Properties, applications, and future perspectives. Enzyme Research, 2015, 1–8.

    Article  Google Scholar 

  33. Sadhu, S., Ghosh, P. K., Aditya, G., & Maiti, T. K. (2014). Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp.(MTCC10046) isolated from cow dung. Journal of King Saud University-Science, 26(4), 323–332.

    Article  Google Scholar 

  34. Saima, K. M., & Ahmad, I. Z. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal, Genetic Engineering & Biotechnology, 11(1), 39–46.

    Article  Google Scholar 

  35. Sandhya, C., Binod, P., Nampoothiri, K. M., Szakacs, G., & Pandey, A. (2005). Microbial synthesis of chitinase in solid cultures and its potential as a biocontrol agent against phytopathogenic fungus Colletotrichum gloeosporioides. Applied Biochemistry and Biotechnology, 127(1), 1–15.

    Article  CAS  Google Scholar 

  36. Singh, A. K., Mehta, G., & Chhatpar, H. S. (2009). Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Letters in Applied Microbiology, 49(6), 708–714.

    Article  CAS  Google Scholar 

  37. Sreena, C. P., & Sebastian, D. (2018). Augmented cellulase production by Bacillus subtilis strain MU S1 using different statistical experimental designs. Journal, Genetic Engineering & Biotechnology, 16(1), 9–16.

    Article  CAS  Google Scholar 

  38. Tasharrofi, N., Adrangi, S., Fazeli, M., Rastegar, H., Khoshayand, M. R., & Faramarzi, M. A. (2011). Optimization of chitinase production by Bacillus pumilus using Plackett-Burman. Iranian Journal of Pharmaceutical Research, 10(4), 759–768.

    CAS  PubMed  Google Scholar 

  39. Velho-Pereira, S., & Kamat, N. M. (2011). Antimicrobial screening of actinobacteria using a modified cross-streak method. Indian Journal of Pharmaceutical Sciences, 73(2), 223–228.

    Article  CAS  Google Scholar 

  40. Warcup, J. H. (1950). The soil-plate method for isolation of fungi from soil. Nature, 166, 117–118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the help rendered by Ms. Lucy Milne, an undergraduate student from Griffith University, Australia for her help in the screening of microorganisms producing chitinase enzyme during her project work at our department.

Funding

The study was supported by Department of Biotechnology, Ministry of Science and Technology, Government of India (project ID: BT/PR10827/AAQ/3/661/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Raghu Chandrashekar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1834 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, N.V., Koteshwara, A., Kiran, G.A. et al. Statistical Optimization for Coproduction of Chitinase and Beta 1, 4-Endoglucanase by Chitinolytic Paenibacillus elgii PB1 Having Antifungal Activity. Appl Biochem Biotechnol 191, 135–150 (2020). https://doi.org/10.1007/s12010-020-03235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03235-8

Keywords

Navigation