Skip to main content
Log in

Use of low cost natural resources for enhanced chitinase production and optimization using CCD and RSM: a new initiative for bio-control of plant pathogen

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

A total number of 160 native fluorescent Pseudomonads were isolated from rhizospheric soil of tomato cultivated in different agro-ecological regions of West Bengal. Out of them 25 (15.63%) were found to be chitinase positive by semi-quantitative spot culture assay on chitinase detection agar media. By quantifying the chitinase production based on spectrophotometric assay, best performing isolate Pseudomonas aeruginosa FPK22 (Gene bank accession number: KY575332) was selected for further study of media optimization. Ten different media compositions were designed with cheap and readily available nutrient and substrate sources viz. aqueous extract of cow dung manure, aqueous extract of vermi compost, aqueous extract of de-oiled neem cake, sugar, sugarcane molasses, Baker’s yeast powder and crab shell powder in their different combinations. The media I, comprising with aqueous extract of vermi compost (V), sugarcane molasses (M), Baker’s yeast (Y) and crab shell powder (C) exhibited maximum biomass and highest chitinase production of the strain FPK22. The media was named, based on its composition, as VMYC media. In VMYC media chitinase production of the strain was enhanced by 1.15 fold than from the standard chitinase detection media. The composition of the VMYC media was then optimized by a four factor (A, B, C, D) central composite design (CCD) and response surface methodology for the response (Y) chitinase activity. By using this design a total of 30 runs were tested and the data were fitted. The regression analysis showed good fit of the experimental data to the second order polynomial model with coefficient of determination (R2) value of 0.9093 and model F value 10.74. The optimum concentrations of vermi wash (250 g/l), sugarcane molasses (20.7 g/l), Baker’s yeast (15 g/l), crab shell powder (5.2 g/l) were recorded from desirability function with a predicted value of chitinase production of 1.125 EU/ml. Ten repetitive runs were tested under the optimized condition of the four variables and observed that they yielded 92.9–98.7% of the predicted chitinase production. Two soil borne fungal pathogens R. solani and S. rolfsii were co-inoculated with the strains P. aeruginosa FPK22 and P. monteilii FPK4 in the optimized VMYC media in dual culture study. The enhancement of inhibition of mycelial growth of the fungal pathogens was also observed in optimized VMYC media compared to PDA media. The mycelial percent inhibition of R. solani challenged with FPK22 and FPK4 were increased by 1.17 and 1.13 fold respectively, besides, the mycelial percent inhibition of S. rolfsii co-inoculated with FPK22 and FPK4 were observed to be enhanced by 1.04 and 1.12 fold, respectively. The field evaluation study with the strains FPK22 and FPK4 grown in optimized VMYC media exhibited that the consortia of the strains could efficiently check the damping off disease, 69.2% and 62%, over control in case of tomato and chilli respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal T, Kotasthane AS (2012) Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus 1:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Alcantara VA, Pajares IG, Simbahan JF, Rubio MD (2012) Substrate dependent production and isolation of an extracellular biosurfactant from Saccharomyces cerevisiae 2031. Philipp J Sci 141:13–24

    Google Scholar 

  • Arivoli S, Hema M, Parthasarathy S, Manju N (2010) Adsorption dynamics of methylene blue by acid activated carbon. J Chem Pharm Res 2(5):626–641

    CAS  Google Scholar 

  • Babu AN, Jogaiah S, Ito S, Nagaraj AK, Tran LSP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73

    Article  CAS  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit N (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697

    Article  PubMed  PubMed Central  Google Scholar 

  • Brzezinska SM, Jankiewicz U, Burkowska A, Walczak M (2014) Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68:71–81

    Article  CAS  Google Scholar 

  • Canellas LP, Piccolo A, Dobbss LB et al (2010) Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78:457–466

    Article  CAS  PubMed  Google Scholar 

  • Chang WT, Chen M, Wang SL (2010) An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World J Microbiol Biotechnol 26:945–950

    Article  CAS  Google Scholar 

  • Furushita M, Shiba T, Maeda T, Yahata M, Kaneoka A (2003) Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl Environ Microbiol 69:5336–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156:201–207

    Article  CAS  PubMed  Google Scholar 

  • Jambhekar H (1992) Use of earthworm as a potential source of decompose organic wastes. In; Proceedings national seminar on organic farming coimbatore, pp 52–53

  • Jogaiah S, Abdelrahman M, Tran LP, Ito SI (2018) Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and the salicylic acid pathways. Mol Plant Pathol 19(4):870–882

    Article  CAS  PubMed  Google Scholar 

  • Keyhani NO, Roseman S (1999) Physiological aspect of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122

    Article  CAS  PubMed  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  • Lamine BM, Lamine BM, Bouziane A (2012) Optimization of the chitinase production by Serratia Marcescens DSM 30121T and biological control of locusts. J Biotechnol Biomat 2:13–138

    Article  CAS  Google Scholar 

  • Lima CJB, Coelho LF, Contiero J (2010) The use of response surface methodology in optimization of lactic acid production: focus on medium supplementation, temperature and pH control. Food Technol Biotechnol 48(2):175–181

    Google Scholar 

  • Miller GL (1959) Use of dinitro salicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429

    Article  CAS  Google Scholar 

  • Momen SB, Siadat SD, Akbari N, Ranjbar B, Khajeh K (2016) Applying central composite design and response surface methodology to optimize growth and biomass production of Haemophilus influenzae type b. Jundishapur J Microbiol 9(6):e25246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal NK, Chattoraj S, Sadhukhan B, Das B (2013) Evaluation of carbaryl sorption in alluvial soil. Songklanakarin J Sci Technol 35(6):727–738

    Google Scholar 

  • Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, New York

    Google Scholar 

  • Nagavallemma KP, Wani SP, Stephane L, Padmaja VV, Vineela C, Baburao M, Sahrawat KL (2004) Vermicomposting: recycling wastes into valuable organic fertilizer. Global Theme on Agrecosystems Report no.8. Patancheru 502324. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, p 20

  • Nandakumar R, Babua S, Viswanathan R, Raguchandera T, Samiyappan R (2001) Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol Biochem 33:603–612

    Article  CAS  Google Scholar 

  • Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzyme Microb Technol 26:473–483

    Article  CAS  PubMed  Google Scholar 

  • Paul T, Das A, Mandal A, Jana A, Maity C, Adak A, Halder SK, Das Mohapatra PK, Pati BR, Mondal KC (2014) Effective dehairing properties of keratinase from Paenibacillu swoosongensis TKB2 obtained under solid state fermentation. Waste Biomass Valor 5(1):97–107

    Article  CAS  Google Scholar 

  • Razack AS, Velayutham V, Thangavelu V (2013) Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turk J Biol 37:280–288

    Google Scholar 

  • Roy DM et al (2000) In: International conference on managing natural resources. Extended Summaries, New Delhi, vol 3, pp 920–921

  • Saadoun I, Al-Omari R, Jadarat Z, Ababneh Q (2009) Influence of culture conditions of Streptomyces sp. (Strain S242) on chitinase production. Pol J Microbiol 58:339–345

    CAS  PubMed  Google Scholar 

  • Sadhukhan B, Mondal NK, Chattoraj S (2016) Optimization using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int J Mod Sci 2:145–155

    Article  Google Scholar 

  • Saha P, Chowdhury S, Gupta S, Kumar I, Kumar R (2010) Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. Clean Soil Air Water 38:437–445

    Article  CAS  Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host–parasite interaction. FEMS Microbiol Rev 11:317–338

    Article  CAS  Google Scholar 

  • Saima M, Kuddus M, Roohi I, Ahmad Z (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Genet Eng Biotechnol 11:39–46

    Article  Google Scholar 

  • Saks E, Jankiewicz U (2010) Chitinolytic activity of bacteria. Postepy Biochem 56(4):427–434

    PubMed  Google Scholar 

  • Saleem F, Younas A, Bashir R, Naz S, Munir N, Shakoori AR (2014) Molecular cloning and characterization of Exochitinase A gene of indigenous Bacillus thuringiensis isolates. Pak J Zool 46:1491–1501

    CAS  Google Scholar 

  • Senthamarai C, Senthil KP, Priyadharshini MP, Vijayalakshmi KV et al (2013) Adsorption behavior of methylene blue dye onto surface modified Strychnospotatorum seeds. Environ Prog Sustain Energy 32:624–632

    Article  CAS  Google Scholar 

  • Shivakumar G, Sharma RC, Rai SN (2000) Biocontrol of banded leaf and sheath blight of maize by peat based Pseudomonas fluorescens formulation. Indian Phytopath 53:190–192

    Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Tel RM, deJong J, Berends GT (1979) Bromocresol purple, a non-specific colour reagent for the determination of serum albumin. J Clin Chem Clin Biochem 17:627–631

    CAS  PubMed  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    Article  Google Scholar 

  • Wightwick A, Walters R, Allinson G, Reichman SM, Menzies NW (2010) Environmental risks of fungicides used in horticultural production systems. In: Reijka (ed) Carisse fungicides, pp 273–304

  • Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144

    CAS  Google Scholar 

Download references

Acknowledgements

The authors of this article are here by acknowledging the support received from Sophisticated Analytical Instrument Facility, Bose Institute, Kolkata regarding scanning electron microscopy.

Funding

This study did not get any external funding from any sources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanishendra Nath Sarker or Subrata Dutta.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study does not contain any study with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, K.N., Das Mohapatra, P.K. & Dutta, S. Use of low cost natural resources for enhanced chitinase production and optimization using CCD and RSM: a new initiative for bio-control of plant pathogen. Indian Phytopathology 72, 281–300 (2019). https://doi.org/10.1007/s42360-019-00143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-019-00143-8

Keywords

Navigation