Skip to main content
Log in

Immobilization of Thermoalkalophilic Lipase from Bacillus atrophaeus FSHM2 on Amine-Modified Graphene Oxide Nanostructures: Statistical Optimization and Its Application for Pentyl Valerate Synthesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Synthesis of (3-aminopropyl) triethoxysilane (APTES)-functionalized graphene oxide (GO) nanosheets, statistical optimization of conditions for immobilization of Bacillus atrophaeus lipase (BaL) on as-synthesized support, and application of the immobilized BaL for esterification of valeric acid were carried out in this investigation. The optimum specific activity of the immobilized BaL (81.60 ± 0.28 U mg−1) was achieved at 3 mg mL−1 of GO-NH2, 50 mM of phosphate buffer, pH 7.0, 60 min sonication time, 100 mM glutaraldehyde, 25 U mL−1 of enzyme, and 8 h immobilization time at 4 °C. The immobilized BaL retained about 90% of its initial activity after 10 days of storage. Moreover, about 70% of the initial activity of the immobilized BaL was retained after 10 cycles of application. The results of esterification studies exhibited that maximum pentyl valerate synthesis using the free BaL (34.5%) and the immobilized BaL (92.7%) occurred in the organic solvent medium (xylene) after 48 h of incubation at 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Forootanfar, H., Rezaei, S., Zeinvand-Lorestani, H., Tahmasbi, H., Mogharabi, M., Ameri, A., & Faramarzi, M. A. (2016). Studies on the laccase-mediated decolorization, kinetic, and microtoxicity of some synthetic azo dyes. Journal of Environmental Health Science and Engineering, 14, 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang, G., Ma, J., Wang, J., Li, Y., Zhang, G., Zhang, F., et al. (2014). Lipase immobilized on graphene oxide as reusable biocatalyst. Industrial & Engineering Chemistry Research, 53(51), 19878–19883.

    Article  CAS  Google Scholar 

  3. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435–456.

    Article  CAS  PubMed  Google Scholar 

  4. Choi, J.-M., Han, S.-S., & Kim, H.-S. (2015). Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnology Advances, 33(7), 1443–1454.

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 62(3–4), 197–212.

    Article  CAS  Google Scholar 

  6. Li, Q., Fan, F., Wang, Y., Feng, W., & Ji, P. (2013). Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent. Industrial & Engineering Chemistry Research, 52(19), 6343–6348.

    Article  CAS  Google Scholar 

  7. Guldhe, A., Singh, B., Mutanda, T., Permaul, K., & Bux, F. (2015). Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renewable and Sustainable Energy Reviews, 41, 1447–1464.

    Article  CAS  Google Scholar 

  8. Ameri, A., Shakibaie, M., Soleimani-Kermani, M., Faramarzi, M. A., Doostmohammadi, M., & Forootanfar, H. (2019). Overproduction of thermoalkalophilic lipase secreted by Bacillus atrophaeus FSHM2 using UV-induced mutagenesis and statistical optimization of medium components. Preparative Biochemistry and Biotechnology, 49(2), 184–191.

    Article  CAS  PubMed  Google Scholar 

  9. Soflaei, S., Dalimi, A., Ghaffarifar, F., Shakibaie, M., Shahverdi, A. R., & Shafiepour, M. (2012). In vitro antiparasitic and apoptotic effects of antimony sulfide nanoparticles on Leishmania infantum. Journal of Parasitology Research, 2012, 756568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gonçalves Filho, D., Silva, A. G., & Guidini, C. Z. (2019). Lipases: sources, immobilization methods, and industrial applications. Applied Microbiology and Biotechnology, 103(18), 7399–7423.

    Article  CAS  Google Scholar 

  11. Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilisation. Biotechnology Letters, 31(11), 1639–1650.

    Article  CAS  PubMed  Google Scholar 

  12. Min, K., & Yoo, Y. J. (2014). Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnology and Bioprocess Engineering, 19(4), 553–567.

    Article  CAS  Google Scholar 

  13. Zhang, S., Shi, J., Deng, Q., Zheng, M., Wan, C., Zheng, C., et al. (2017). Preparation of carriers based on zno nanoparticles decorated on graphene oxide (GO) nanosheets for efficient immobilization of lipase from Candida rugosa. Molecules, 22(7), 1205.

    Article  PubMed Central  CAS  Google Scholar 

  14. Tang, A., Zhang, Y., Wei, T., Wu, J., Li, Q., & Liu, Y. (2019). Immobilization of Candida cylindracea lipase by covalent attachment on Glu-modified bentonite. Applied Biochemistry and Biotechnology, 187(3), 870–883.

    Article  CAS  PubMed  Google Scholar 

  15. Hermanová, S., Zarevúcká, M., Bouša, D., Pumera, M., & Sofer, Z. (2015). Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale, 7(13), 5852–5858.

    Article  PubMed  CAS  Google Scholar 

  16. Xie, W., & Huang, M. (2018). Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Conversion and Management, 159, 42–53.

    Article  CAS  Google Scholar 

  17. Akhond, M., Pashangeh, K., Karbalaei-Heidari, H., & Absalan, G. (2016). Efficient immobilization of porcine pancreatic α-amylase on amino-functionalized magnetite nanoparticles: characterization and stability evaluation of the immobilized enzyme. Applied Biochemistry and Biotechnology, 180(5), 954–968.

    Article  CAS  PubMed  Google Scholar 

  18. Zniszczoł, A., Herman, A. P., Szymańska, K., Mrowiec-Białoń, J., Walczak, K. Z., Jarzębski, A., et al. (2016). Covalently immobilized lipase on aminoalkyl-, carboxy-and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters. Enzyme and Microbial Technology, 87, 61–69.

    Article  PubMed  CAS  Google Scholar 

  19. Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: a review. Biotechnology Advances, 28(5), 628–634.

    Article  CAS  PubMed  Google Scholar 

  20. Dutta, N., & Saha, M. K. (2018). Immobilization of a mesophilic lipase on graphene oxide: stability, activity, and reusability insights. Methods in Enzymology, 609, 247–272.

    Article  PubMed  Google Scholar 

  21. Jafarian, F., Bordbar, A. K., Zare, A., & Khosropour, A. (2018). The performance of immobilized Candida rugosa lipase on various surface modified graphene oxide nanosheets. International Journal of Biological Macromolecules, 111, 1166–1174.

    Article  CAS  PubMed  Google Scholar 

  22. Tan, H., Feng, W., & Ji, P. (2012). Lipase immobilized on magnetic multi-walled carbon nanotubes. Bioresource Technology, 115, 172–176.

    Article  CAS  PubMed  Google Scholar 

  23. Asmat, S., Husain, Q., & Azam, A. (2017). Lipase immobilization on facile synthesized polyaniline-coated silver-functionalized graphene oxide nanocomposites as novel biocatalysts: stability and activity insights. RSC Advances, 7(9), 5019–5029.

    Article  CAS  Google Scholar 

  24. Tian, S., Liu, Z., Shen, L., Pu, J., Liu, W., Sun, X., et al. (2018). Performance evaluation of mercapto functional hybrid silica sol–gel coating and its synergistic effect with f-GNs for corrosion protection of copper surface. RSC Advances, 8(14), 7438–7449.

    Article  CAS  Google Scholar 

  25. Shao, Y., Jing, T., Tian, J., & Zheng, Y. (2015). Graphene oxide-based Fe3O4 nanoparticles as a novel scaffold for the immobilization of porcine pancreatic lipase. RSC Advances, 5(126), 103943–103955.

    Article  CAS  Google Scholar 

  26. Amirbandeh, M., & Taheri-Kafrani, A. (2016). Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: improved stability and reusability. International Journal of Biological Macromolecules, 93(Pt A), 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  27. Haghighi, N., Hallaj, R., & Salimi, A. (2017). Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity. Materials Science & Engineering C, Materials for Biological Applications, 73, 417–424.

    Article  CAS  Google Scholar 

  28. Mondal, M. K., Mukherjee, S., Saha, S. K., Chowdhury, P., & Sinha Babu, S. P. (2017). Design and synthesis of reduced graphene oxide based supramolecular scaffold: A benign microbial resistant network for enzyme immobilization and cell growth. Materials Science & Engineering C, Materials for biological applications, 75, 1168–1177.

    Article  CAS  Google Scholar 

  29. Royvaran, M., Taheri-Kafrani, A., Landarani Isfahani, A., & Mohammadi, S. (2016). Functionalized superparamagnetic graphene oxide nanosheet in enzyme engineering: a highly dispersive, stable and robust biocatalyst. Chemical Engineering Journal, 288, 414–422.

    Article  CAS  Google Scholar 

  30. Zhang, F., Zheng, B., Zhang, J., Huang, X., Liu, H., Guo, S., et al. (2010). Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. The Journal of Physical Chemistry C, 114(18), 8469–8473.

    Article  CAS  Google Scholar 

  31. Badoei-dalfard, A., Karami, Z., & Malekabadi, S. (2019). Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: an efficient nanobiocatalyst for biodiesel production. Bioresource Technology, 278, 473–476.

    Article  CAS  PubMed  Google Scholar 

  32. Ameri, A., Shakibaie, M., Faramarzi, M. A., Ameri, A., Amirpour-Rostami, S., Rahimi, H. R., et al. (2017). Thermoalkalophilic lipase from an extremely halophilic bacterial strain Bacillus atrophaeus FSHM2: purification, biochemical characterization and application. Biocatalysis and Biotransformation, 35(3), 151–160.

    Article  CAS  Google Scholar 

  33. Hummers Jr., W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339.

    Article  CAS  Google Scholar 

  34. Akbari, T., Pourhajibagher, M., Hosseini, F., Chiniforush, N., Gholibegloo, E., Khoobi, M., Shahabi, S., & Bahador, A. (2017). The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 20, 148–153.

    Article  CAS  PubMed  Google Scholar 

  35. Hasan-Beikdashti, M., Forootanfar, H., Safiarian, M., Ameri, A., Ghahremani, M., Khoshayand, M., et al. (2012). Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 670–677.

    Article  CAS  Google Scholar 

  36. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  37. Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A., & Faramarzi, M. A. (2015). Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: characterization and application. Materials Chemistry and Physics, 149, 77–86.

    Article  CAS  Google Scholar 

  38. Rezaei, A., Akhavan, O., Hashemi, E., & Shamsara, M. (2016). Ugi four-component assembly process: an efficient approach for one-pot multifunctionalization of nanographene oxide in water and its application in lipase immobilization. Chemistry of Materials, 28(9), 3004–3016.

    Article  CAS  Google Scholar 

  39. Amirkhani, L., Moghaddas, J., & Jafarizadeh, M. H. (2016). Optimization of Candida rugosa lipase immobilization parameters on magnetic silica aerogel using adsorption method. Iranian Journal of Chemical Engineering, 13, 19–31.

    Article  CAS  Google Scholar 

  40. Aybastıer, Ö., & Demir, C. (2010). Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene–divinylbenzene copolymer using response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 63(3–4), 170–178.

    Article  CAS  Google Scholar 

  41. Yücel, Y. (2012). Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. Biocatalysis and Agricultural Biotechnology, 1(1), 39–44.

    Article  CAS  Google Scholar 

  42. Huang, L., & Cheng, Z.-M. (2008). Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis. Chemical Engineering Journal, 144(1), 103–109.

    Article  CAS  Google Scholar 

  43. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 4(4), 1583–1600.

    Article  CAS  Google Scholar 

  44. Talekar, S., Joshi, A., Joshi, G., Kamat, P., Haripurkar, R., & Kambale, S. (2013). Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Advances, 3(31), 12485.

    Article  CAS  Google Scholar 

  45. Ranjbari, N., Razzaghi, M., Fernandez-Lafuente, R., Shojaei, F., Satari, M., & Homaei, A. (2019). Improved features of a highly stable protease from Penaeus vannamei by immobilization on glutaraldehyde activated graphene oxide nanosheets. International Journal of Biological Macromolecules, 130, 564–572.

    Article  CAS  PubMed  Google Scholar 

  46. Heidarizadeh, M., Doustkhah, E., Rostamnia, S., Rezaei, P. F., Harzevili, F. D., & Zeynizadeh, B. (2017). Dithiocarbamate to modify magnetic graphene oxide nanocomposite (Fe3O4-GO): a new strategy for covalent enzyme (lipase) immobilization to fabrication a new nanobiocatalyst for enzymatic hydrolysis of PNPD. International Journal of Biological Macromolecules, 101, 696–702.

    Article  CAS  PubMed  Google Scholar 

  47. Khoobi, M., Khalilvand-Sedagheh, M., Ramazani, A., Asadgol, Z., Forootanfar, H., & Faramarzi, M. A. (2016). Synthesis of polyethyleneimine (PEI) and β-cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification. Journal of Chemical Technology & Biotechnology, 91(2), 375–384.

    Article  CAS  Google Scholar 

  48. Asmat, S., & Husain, Q. (2018). Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: characterization and application. International Journal of Biological Macromolecules, 117, 331–341.

    Article  CAS  PubMed  Google Scholar 

  49. Cui, S., Zhou, Q. W., Wang, X. L., Yang, S. Q., Chen, K., Dai, Z. Y., et al. (2017). Immobilization of lipase onto N-succinyl-chitosan beads and its application in the enrichment of polyunsaturated fatty acids in fish oil. Journal of Food Biochemistry, 41(5), e12395.

    Article  CAS  Google Scholar 

  50. Asmat, S., Husain, Q., & Khan, M. S. (2018). A polypyrrole–methyl anthranilate functionalized worm-like titanium dioxide nanocomposite as an innovative tool for immobilization of lipase: preparation, activity, stability and molecular docking investigations. New Journal of Chemistry, 42(1), 91–102.

    Article  CAS  Google Scholar 

  51. Patel, V., Gajera, H., Gupta, A., Manocha, L., & Madamwar, D. (2015). Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: process parameters and reusability studies. Biochemical Engineering Journal, 95, 62–70.

    Article  CAS  Google Scholar 

  52. Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A., & Faramarzi, M. A. (2014). Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochemical Engineering Journal, 88, 131–141.

    Article  CAS  Google Scholar 

  53. Raghavendra, T., Panchal, N., Divecha, J., Shah, A., & Madamwar, D. (2014). Biocatalytic synthesis of flavor ester “pentyl valerate” using candida rugosa lipase immobilized in microemulsion based organogels: effect of parameters and reusability. BioMed Research International, 2014.

  54. Patel, V., Deshpande, M., & Madamwar, D. (2017). Increasing esterification efficiency by double immobilization of lipase-ZnO bioconjugate into sodium bis (2-ethylhexyl) sulfosuccinate (AOT)-reverse micelles and microemulsion based organogels. Biocatalysis and Agricultural Biotechnology, 10, 182–188.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran. Research reported in this publication was also supported by Elite Researcher Grant Committee under award number from the National Institutes for Medical Research Development (987592), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mojtaba Shakibaie or Hamid Forootanfar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameri, A., Shakibaie, M., Khoobi, M. et al. Immobilization of Thermoalkalophilic Lipase from Bacillus atrophaeus FSHM2 on Amine-Modified Graphene Oxide Nanostructures: Statistical Optimization and Its Application for Pentyl Valerate Synthesis. Appl Biochem Biotechnol 191, 579–604 (2020). https://doi.org/10.1007/s12010-019-03180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03180-1

Keywords

Navigation