Skip to main content
Log in

Viramidine-Loaded Galactosylated Nanoparticles Induce Hepatic Cancer Cell Apoptosis and Inhibit Angiogenesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Current estimates indicate that hepatocarcinoma is the leading cause of death globally. There is interest in utilizing nanomedicine for cancer therapy to overcome side effects of chemo-interventions. Ribavirin, an antiviral nucleoside inhibitor, accumulates inside red blood cells, causing anemia. Its analog, viramidine, can concentrate within hepatocytes and spare red blood cells, thus limiting anemia. Hepatocarcinoma cells have a large number of asialoglycoprotein receptors on their membranes that can bind galactosyl-terminating solid lipid nanoparticles (Gal-SLN) and internalize them. Here, viramidine, 5-fluorouracil, and paclitaxel-loaded Gal-SLN were characterized inside cells. Cytotoxicities of free-drug, nano-void, and drug-loaded Gal-SLN were evaluated using HepG2 cells; over 3 days, cell viability was measured. To test the mechanistic pathway, we investigated in vitro apoptosis using flow cytometry and in ovo angiogenesis using the CAM assay. Results showed that 1 and 2 μM of the viramidine-encapsulated Gal-SLN had the highest cytotoxic effect, achieving 80% cell death with a steady increase over 3 days, with induction of apoptosis and reduction of necrosis and angiogenesis, compared to free-drugs. Gal-SLN application on breast cancer MCF-7 cells confirmed its specificity against liver cancer HepG2 cells. We conclude that viramidine-encapsulated Gal-SLN has anticancer and anti-angiogenic activities against hepatocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abd-Rabou, A. A., & Ahmed, H. H. (2017). CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: a novel approach for induction of apoptosis in HepG2 cell line. Advances in Medical Sciences, 62(2), 357–367.

    PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: a Cancer Journal for Clinicians, 67(1), 7–30.

    Google Scholar 

  3. Fitzmaurice, C., Allen, C., Barber, R. M., Barregard, L., Bhutta, Z. A., Brenner, H., Dicker, D. J., Chimed-Orchir, O., Dandona, R., Dandona, L., et al. (2017). Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncology, 3, 524–548.

    PubMed  Google Scholar 

  4. Kmiec, Z. (2001). Cooperation of liver cells in health and disease (1st ed.). Berlin Heidelberg: Springer.

    Google Scholar 

  5. Kabanov, A. V., & Gendelman, H. E. (2007). Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Progress in Polymer Science, 32(8-9), 1054–1082.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Redhead, H. M., Davis, S. S., & Illum, L. (2001). Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. Journal of Controlled Release, 70(3), 353–363.

    CAS  PubMed  Google Scholar 

  7. Freitas, C., & Müller, R. H. (1999). Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. European Journal of Pharmaceutics and Biopharmaceutics, 47(2), 125–132.

    CAS  PubMed  Google Scholar 

  8. Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine, 3(1), 20–31.

    CAS  PubMed  Google Scholar 

  9. Park, J. H., Lee, S., Kim, J. H., Park, K., Kim, K., & Kwon, I. C. (2008). Polymeric nanomedicine for cancer therapy. Progress in Polymer Science, 33(1), 113–137.

    Google Scholar 

  10. Sumer, B., & Gao, J. (2008). Theranostic nanomedicine for cancer. Nanomedicine (London, England), 3(2), 137–140.

    Google Scholar 

  11. Amini, R., Jalilian, F. A., Abdullah, S., Veerakumarasivam, A., Hosseinkhani, H., Abdulamir, A. S., Domb, A. J., Ickowicz, D., & Rosli, R. (2013). Dynamics of PEGylated–dextran–spermine nanoparticles for gene delivery to leukemic cells. Applied Biochemistry and Biotechnology, 170(4), 841–853.

    CAS  PubMed  Google Scholar 

  12. Asiri, S. M., Khan, F. A., & Bozkurt, A. (2019). Delivery of conjugated silicon dioxide nanoparticles show strong anti-proliferative activities. Applied Biochemistry and Biotechnology, 1–14.

  13. Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews in Therapeutic Drug Carrier Systems, 26(6), 523–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kovačević, A. B., Müller, R. H., Savić, S. D., Vuleta, G. M., & Keck, C. M. (2014). Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: Preparation, characterization and physical stability investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 15–25.

    Google Scholar 

  15. Ali, H., Verma, P. R. P., Dubey, S. K., Venkatesan, J., Seo, Y., Kim, S. K., & Singh, S. K. (2017). In vitro-in vivo and pharmacokinetic evaluation of solid lipid nanoparticles of furosemide using Gastroplus (TM). RSC Advances, 7(53), 33314–33326.

    CAS  Google Scholar 

  16. Bhalekar, M., Upadhaya, P., & Madgulkar, A. (2017). Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Applied Nanoscience, 7(1-2), 47–57.

    CAS  Google Scholar 

  17. Ravi, P. R., Aditya, N., Kathuria, H., Malekar, S., & Vats, R. (2014). Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. European Journal of Pharmaceutics and Biopharmaceutics, 87(1), 114–124.

    CAS  PubMed  Google Scholar 

  18. Zhang, Z., Gao, F., Bu, H., Xiao, J., & Li, Y. (2012). Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine, 8(5), 740–747.

    CAS  PubMed  Google Scholar 

  19. Lin, C. H., Chen, C. H., Lin, Z. C., & Fang, J. Y. (2017). Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Journal of Food and Drug Analysis, 25(2), 219–234.

    CAS  PubMed  Google Scholar 

  20. MacGregor, K. J., Embleton, J. K., Lacy, J. E., Perry, E. A., Solomon, L. J., Seager, H., & Pouton, C. W. (1997). Influence of lipolysis on drug absorption from the gastro-intestinal tract. Advanced Drug Delivery Reviews, 25(1), 33–46.

    CAS  Google Scholar 

  21. Muller, R. H., Weyhers, H., ZurMuhlen, A., Dingler, A., & Mehnert, W. (1997). Solid lipid nanoparticles - A novel carrier system for cosmetics and pharmaceutics. 1. Properties, production and scaling up. Pharmazeutische Industrie, 59, 423–427.

    CAS  Google Scholar 

  22. Üner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2(3), 289–300.

    PubMed  PubMed Central  Google Scholar 

  23. Trere, D., Fiume, L., De Giorgi, L. B., Di Stefano, G., Migaldi, M., & Derenzini, M. (1999). The asialoglycoprotein receptor in human hepatocellular carcinomas: its expression on proliferating cells. British Journal of Cancer, 81(3), 404–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi, Y. H., Liu, F., Choi, J. S., Kim, S. W., & Park, J. S. (1999). Characterization of a targeted gene carrier, lactose-polyethylene glycol-grafted poly-L-lysine and its complex with plasmid DNA. Human Gene Therapy, 10(16), 2657–2665.

    CAS  PubMed  Google Scholar 

  25. Han, J., Lim, S. J., Lee, M. K., & Kim, C. K. (2001). Altered pharmacokinetics and liver targetability of methotrexate by conjugation with lactosylated albumins. Drug Delivery, 8, 125–134.

    CAS  PubMed  Google Scholar 

  26. Sliedregt, L. A., Rensen, P. C., Rump, E. T., van Santbrink, P. J., Bijsterbosch, M. K., Valentijn, A. R., van der Marel, G. A., van Boom, J. H., van Berkel, T. J., & Biessen, E. A. (1999). Design and synthesis of novel amphiphilic dendritic galactosides for selective targeting of liposomes to the hepatic asialoglycoprotein receptor. Journal of Medicinal Chemistry, 42(4), 609–618.

    CAS  PubMed  Google Scholar 

  27. Orr, G. A., Rando, R. R., & Bangerter, F. W. (1979). Synthetic glycolipids and the lectin-mediated aggregation of liposomes. The Journal of Biological Chemistry, 254(11), 4721–4725.

    CAS  PubMed  Google Scholar 

  28. Belousova, V., Abd-Rabou, A. A., & Mousa, S. A. (2015). Recent advances and future directions in the management of hepatitis C infections. Pharmacology & Therapeutics, 145, 92–102.

    CAS  Google Scholar 

  29. Hubbell, J. A. (2004). Tissue and cell engineering. Current Opinion in Biotechnology, 15(5), 381–382.

    CAS  PubMed  Google Scholar 

  30. Lee, M. Y., Yang, J. A., Jung, H. S., Beack, S., Choi, J. E., Hur, W., Koo, H., Kim, K., Yoon, S. K., & Hahn, S. K. (2012). Hyaluronic acid-gold nanoparticle/interferon a complex for targeted treatment of hepatitis C virus infection. ACS Nano, 6(11), 9522–9531.

    CAS  PubMed  Google Scholar 

  31. Abo-Zeid, Y., Irving, W., Thomson, B., & Garnett, M. (2013). Nanoparticle delivery systems for HCV treatment: do nanoparticles avoid uptake by erythrocytes? Journal of Viral Hepatitis, 20, 28–29.

    Google Scholar 

  32. Schekman, R., & Singer, S. J. (1976). Clustering and endocytosis of membrane receptors can be induced in mature erythrocytes of neonatal but not adult humans. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 4075–4079.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothen-Rutishauser, B. M., Schurch, S., Haenni, B., Kapp, N., & Gehr, P. (2006). Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environmental Science & Technology, 40(14), 4353–4359.

    CAS  Google Scholar 

  34. Deming, P., & Arora, S. (2011). Taribavirin in the treatment of hepatitis C. Expert Opinion on Investigational Drugs, 20(10), 1435–1443.

    CAS  PubMed  Google Scholar 

  35. Abd-Rabou, A. A., Abdel-Wahab, B. F., & Bekheit, M. S. (2018). Synthesis, molecular docking, and evaluation of novel bivalent pyrazolinyl-1,2,3-triazoles as potential VEGFR TK inhibitors and anti-cancer agents. Chemical Papers, 72(9), 2225–2237.

    CAS  Google Scholar 

  36. Morosi, L., Spinelli, P., Zucchetti, M., Pretto, F., Carra, A., D'Incalci, M., Giavazzi, R., & Davoli, E. (2013). Determination of paclitaxel distribution in solid tumors by nano-particle assisted laser desorption ionization mass spectrometry imaging. PLoS One, 8, e72532.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Peters, G. J., Lankelma, J., Kok, R. M., Noordhuis, P., van Groeningen, C. J., van der Wilt, C. L., Meyer, S., & Pinedo, H. M. (1993). Prolonged retention of high concentrations of 5-fluorouracil in human and murine tumors as compared with plasma. Cancer Chemotherapy and Pharmacology, 31(4), 269–276.

    CAS  PubMed  Google Scholar 

  38. Wang, W., Zhao, X., Hu, H., Chen, D., Gu, J., Deng, Y., & Sun, J. (2010). Galactosylated solid lipid nanoparticles with cucurbitacin B improves the liver targetability. Drug Delivery, 17(3), 114–122.

    CAS  PubMed  Google Scholar 

  39. van Meerloo, J., Kaspers, G. J., & Cloos, J. (2011). Cell sensitivity assays: the MTT assay. Methods in Molecular Biology, 731, 237–245.

    PubMed  Google Scholar 

  40. Abd-Rabou, A. A., Bharali, D. J., & Mousa, S. A. (2018). Taribavirin and 5-fluorouracil-loaded pegylated-lipid nanoparticle synthesis, p38 docking, and antiproliferative effects on MCF-7 breast cancer. Pharmaceutical Research, 35(4), 76.

    PubMed  Google Scholar 

  41. Varshosaz, J., Hassanzadeh, F., Sadeghi, H., & Khadem, M. (2012). Galactosylated nanostructured lipid carriers for delivery of 5-FU to hepatocellular carcinoma. Journal of Liposome Research, 22(3), 224–236.

    CAS  PubMed  Google Scholar 

  42. Ahmed, M., & Narain, R. (2015). Carbohydrate-based materials for targeted delivery of drugs and genes to the liver. Nanomedicine (London, England), 10(14), 2263–2288.

    CAS  Google Scholar 

  43. Sahoo, S. K., & Labhasetwar, V. (2005). Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Molecular Pharmaceutics, 2(5), 373–383.

    CAS  PubMed  Google Scholar 

  44. Li, D. C., Zhong, X. K., Zeng, Z. P., Jiang, J. G., Li, L., Zhao, M. M., Yang, X. Q., Chen, J., Zhang, B. S., Zhao, Q. Z., Xie, M. Y., Xiong, H., Deng, Z. Y., Zhang, X. M., Xu, S. Y., & Gao, Y. X. (2009). Application of targeted drug delivery system in Chinese medicine. Journal of Controlled Release, 138(2), 103–112.

    CAS  PubMed  Google Scholar 

  45. Whitesides, G. M. (2003). The ‘right’ size in nanobiotechnology. Nature Biotechnology, 21(10), 1161–1165.

    CAS  PubMed  Google Scholar 

  46. Marcucci, F., & Lefoulon, F. (2004). Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discovery Today, 9(5), 219–228.

    CAS  PubMed  Google Scholar 

  47. Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids and Surfaces. B, Biointerfaces, 44(2-3), 65–73.

    CAS  PubMed  Google Scholar 

  48. Song, B., Zhang, W., Peng, R., Huang, J., Nie, T., Li, Y., Jiang, Q., & Gao, R. (2009). Synthesis and cell activity of novel galactosylated chitosan as a gene carrier. Colloids and Surfaces. B, Biointerfaces, 70(2), 181–186.

    CAS  PubMed  Google Scholar 

  49. Cheng, M., He, B., Wan, T., Zhu, W., Han, J., Zha, B., Chen, H., Yang, F., Li, Q., Wang, W., Xu, H., & Ye, T. (2012). 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. PLoS One, 7, e47115.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gankhuyag, N., Singh, B., Maharjan, S., Choi, Y. J., Cho, C. S., & Cho, M. H. (2015). Galactosylated poly(ethyleneglycol)-lithocholic acid selectively kills hepatoma cells, while sparing normal liver cells. Macromolecular Bioscience, 15(6), 777–787.

    CAS  PubMed  Google Scholar 

  51. Wang, Y., Jiang, G., Qiu, T., & Ding, F. (2012). Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Drug Development and Industrial Pharmacy, 38(9), 1039–1046.

    CAS  PubMed  Google Scholar 

  52. Singla, A. K., Garg, A., & Aggarwal, D. (2002). Paclitaxel and its formulations. International Journal of Pharmaceutics, 235(1-2), 179–192.

    CAS  PubMed  Google Scholar 

  53. Cho, C. S., Kobayashi, A., Takei, R., Ishihara, T., Maruyama, A., & Akaike, T. (2001). Receptor-mediated cell modulator delivery to hepatocyte using nanoparticles coated with carbohydrate-carrying polymers. Biomaterials, 22(1), 45–51.

    CAS  PubMed  Google Scholar 

  54. Cheng, M. R., Li, Q., Wan, T., He, B., Han, J., Chen, H. X., Yang, F. X., Wang, W., Xu, H. Z., Ye, T., & Zha, B. B. (2012). Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World Journal of Gastroenterology, 18(42), 6076–6087.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, Z., Guo, K. J., Guo, R. X., & He, S. G. (2007). Effects of 5-fluorouracil combined with sulfasalazine on human pancreatic carcinoma cell line BxPC-3 proliferation and apoptosis in vitro. Hepatobiliary & Pancreatic Diseases International, 6(3), 312–320.

    CAS  Google Scholar 

  56. Sasaki, K., Tsuno, N. H., Sunami, E., Tsurita, G., Kawai, K., Okaji, Y., Nishikawa, T., Shuno, Y., Hongo, K., Hiyoshi, M., Kaneko, M., Kitayama, J., Takahashi, K., & Nagawa, H. (2010). Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer, 10(1), 370.

    PubMed  PubMed Central  Google Scholar 

  57. Parikh, N., Koshy, C., Dhayabaran, V., Perumalsamy, L. R., Sowdhamini, R., & Sarin, A. (2007). The N-terminus and alpha-5, alpha-6 helices of the pro-apoptotic protein Bax, modulate functional interactions with the anti-apoptotic protein Bcl-xL. BMC Cell Biology, 8(1), 16.

    PubMed  PubMed Central  Google Scholar 

  58. Avraam, K., Pavlakis, K., Papadimitriou, C., Vrekoussis, T., Panoskaltsis, T., Messini, I., & Patsouris, E. (2011). The prognostic and predictive value of ERCC-1, p53, Bcl-2 and Bax in epithelial ovarian cancer. European Journal of Gynaecological Oncology, 32(5), 516–520.

    CAS  PubMed  Google Scholar 

  59. Choi, B. H., Kim, W., Wang, Q. C., Kim, D. C., Tan, S. N., Yong, J. W., Kim, K. T., & Yoon, H. S. (2008). Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Letters, 261(1), 37–45.

    CAS  PubMed  Google Scholar 

  60. Lee, J. S., Jung, W. K., Jeong, M. H., Yoon, T. R., & Kim, H. K. (2012). Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway. International Journal of Toxicology, 31(1), 70–77.

    CAS  PubMed  Google Scholar 

  61. Parkpian, V., Verasertniyom, O., Vanichapuntu, M., Totemchokchyakarn, K., Nantiruj, K., Pisitkul, P., Angchaisuksiri, P., Archararit, N., Rachakom, B., Ayurachai, K., & Janwityanujit, S. (2007). Specificity and sensitivity of anti-b2-glycoprotein I as compared with anticardiolipin antibody and lupus anticoagulant in Thai systemic lupus erythematosus patients with clinical features of antiphospholipid syndrome. Clinical Rheumatology, 26(10), 1663–1670.

    PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript was extracted from the project entitled, “Nano-Drug Delivery for Cancer Therapy” by A.A.A. through the international exchange program at Albany College of Pharmacy and Health Sciences (ACPHS) in collaboration with and funded by the Pharmaceutical Research Institute at ACPHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Mousa.

Ethics declarations

Conflict of Interest

S.A.M. owns stock in NanoPharmaceuticals LLC, a pharmaceutical company that is developing nano drugs. All the other authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Rabou, A.A., Bharali, D.J. & Mousa, S.A. Viramidine-Loaded Galactosylated Nanoparticles Induce Hepatic Cancer Cell Apoptosis and Inhibit Angiogenesis. Appl Biochem Biotechnol 190, 305–324 (2020). https://doi.org/10.1007/s12010-019-03090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03090-2

Keywords

Navigation