Skip to main content

Advertisement

Log in

Pyrolysis Characteristics and Reaction Mechanisms of Pine Needles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pyrolysis has been considered as a promising method to utilize biomass by thermal cracking for energy or feedstock. In order to provide guidance for thermochemical process management of pine needle utilization by pyrolysis, the pyrolysis kinetics and reaction mechanism of one typical pine needle are investigated employing thermogravimetric analysis in nitrogen in the present study. Multi kinetics methods including model-free method and model-fitting method are adopted. Results indicate that one peak and three shoulders occur in the reaction rate curves. The maximum reaction rates decrease with the increasing of heating rates, and the average reaction rate of the whole process is 0.0021 K−1. The pyrolysis process of pine needles in nitrogen may be divided into four stages in the conversion rate range of 0~0.1, 0.1~0.5, 0.5~0.75, and 0.75~1, which may be mainly resulted by the reaction of the extractives, hemicellulose, cellulose, and lignin, respectively. The reaction mechanisms of stages I, II, and III may be regarded as random nucleation and nuclei growth, but the reaction mechanism of stage IV may be chemical reaction. The average value of activation energy and logarithm of the pre-exponential factor for the whole pyrolysis process is 215.99 kJ mol−1 and 38.75 min−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ding, Y., Ezekoye, O. A., Zhang, J., Wang, C., & Lu, S. (2018). The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel, 232, 147–153.

    Article  CAS  Google Scholar 

  2. Jiang, L., Zhang, D., Li, M., He, J. J., Gao, Z. H., Zhou, Y., & Sun, J. H. (2018). Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel, 222, 11–20.

    Article  CAS  Google Scholar 

  3. Ding, Y., Ezekoye, O. A., Lu, S., Wang, C., & Zhou, R. (2017). Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energy Conversion & Management, 132, 102–109.

    Article  CAS  Google Scholar 

  4. Liu, G., & Bao, J. (2019). Constructing super large scale cellulosic ethanol plant by decentralizing dry acid pretreatment technology into biomass collection depots. Bioresource Technology, 338–344.

  5. Kalinoski, R. M., Flores, H. D., Thapa, S., Tuegel, E. R., Bilek, M. A., Reyes-Mendez, E. Y., West, M. J., Dumonceaux, T. J., & Canam, T. (2017). Pretreatment of hardwood and Miscanthus with Trametes versicolor for bioenergy conversion and densification strategies. Applied Biochemistry and Biotechnology, 183(4), 1–13.

    Article  Google Scholar 

  6. Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2016). Recycled de-oiled algal biomass extract as a feedstock for boosting biodiesel production from Chlorella minutissima. Applied Biochemistry and Biotechnology, 180(8), 1–8.

    Article  Google Scholar 

  7. Zhu, J., Rong, Y., Yang, J., Zhou, X., Xu, Y., Zhang, L., Chen, J., Yong, Q., & Yu, S. (2015). Integrated production of xylonic acid and bioethanol from acid-catalyzed steam-exploded corn stover. Applied Biochemistry and Biotechnology, 176(5), 1370–1381.

    Article  CAS  Google Scholar 

  8. Bioenergy. Available from https://www.irena.org/bioenergy.

  9. Lengowski, E. C., Nisgoski, S., Magalhães, W. L. E. D., Capobianco, G., Satyanarayana, K. G., & Muñiz, G. I. B. D. (2014). Characterization of Pinus sp of needle to assess their possible industrial applications. Journal of Biobased Materials & Bioenergy, 8(2), 192–201.

    Article  CAS  Google Scholar 

  10. Muñiz, G. I. B. d., Lengowski, E. C., Nisgoski, S., Magalhães, W. L. E. d., Oliveira, V. T. d., & Hansel, F. (2014). Characterization of Pinus spp needles and evaluation of their potential use for energy. Cerne, 20(2), 245–250.

    Article  Google Scholar 

  11. Ding, Y., Ezekoye, O. A., Lu, S., & Wang, C. (2016). Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Conversion & Management, 120, 370–377.

    Article  CAS  Google Scholar 

  12. Fernandez, A., Saffe, A., Pereyra, R., Mazza, G., & Rodriguez, R. (2016). Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Applied Thermal Engineering, 106, 1157–1164.

    Article  CAS  Google Scholar 

  13. Statheropoulos, M., Liodakis, S., Tzamtzis, N., Pappa, A., & Kyriakou, S. (1997). Thermal degradation of Pinus halepnsis pine needles using various analytical methods. Journal of Analytical and Applied Pyrolysis, 43(2), 115–123.

    Article  CAS  Google Scholar 

  14. Niu, H. (2014). Study on pyrolysis kinetics and combustibility of forest fuel. PhD, University of Science and Technology of China.

  15. Varma, A. K., & Mondal, P. (2016). Physicochemical characterization and kinetic study of pine needle for pyrolysis process. Journal of Thermal Analysis & Calorimetry, 124(1), 487–497.

    Article  CAS  Google Scholar 

  16. Fateh, T., Richard, F., Zaida, J., Rogaume, T., & Joseph, P. (2016). Multi-scale experimental investigations of the thermal degradation of pine needles. Fire & Materials, 41(6), 654–674.

    Article  Google Scholar 

  17. Li, K. Y., Huang, X., Fleischmann, C., Rein, G., & Ji, J. (2014). Pyrolysis of medium-density fiberboard: Optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy & Fuels, 28(9), 6130–6139.

    Article  CAS  Google Scholar 

  18. Kissinger, H. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702–1706.

    Article  CAS  Google Scholar 

  19. Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part C Polymer Letters, 4(5), 323–328.

    Article  CAS  Google Scholar 

  20. Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11), 1881–1886.

    Article  CAS  Google Scholar 

  21. Doyle, C. (1961). Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5(15), 285–292.

    Article  CAS  Google Scholar 

  22. Kissinger, H. E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57, 217–221.

    Article  CAS  Google Scholar 

  23. Akahira, T., & Sunose, T. (1971). Joint convention of four electrical institutes. Environmental Science & Technology, 16, 22–31.

    Google Scholar 

  24. Murray, P., & White, J. (1955). Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. Trans J Brit Ceram Soc, 54, 204–238.

    CAS  Google Scholar 

  25. Coats, A., & Redfern, J. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68–69.

    Article  CAS  Google Scholar 

  26. Sergey, B., Alan, K., Criado, M. J., Perezmaqueda, A. L., Popescu, & Crisan. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1–2), 1–19.

    Google Scholar 

  27. Chen, D. Y., Yan, Z., & Zhu, X. F. (2013). In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, 131(3), 40–46.

    Article  CAS  Google Scholar 

  28. Grønli, M. G., Várhegyi, G., & Blasi, C. D. (2002). Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41(17), 4201–4208.

    Article  Google Scholar 

  29. Debiagi, P. E. A., Pecchi, C., Gentile, G., Frassoldati, A., Cuoci, A., Faravelli, T., & Ranzi, E. (2015). Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis. Energy & Fuels, 29(10), 6544–6555.

    Article  CAS  Google Scholar 

  30. Ebringerová, A., Hromádková, Z., & Heinze, T. (2005). Hemicellulose. Advances in Polymer Science, 1–67.

  31. Qiu, X., & Hu, S. (2013). “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Materials, 6(3), 738–781.

    Article  CAS  Google Scholar 

  32. Yang, H., Rong, Y., Chen, H., Zheng, C., & Liang, D. T. (2011). In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels, 20(1), 388–393.

    Article  Google Scholar 

  33. Ammar, K., & Flanagan, D. R. (2010). Solid-state kinetic models: Basics and mathematical fundamentals. Journal of Physical Chemistry B, 110(35), 17315–17328.

    Google Scholar 

Download references

Funding

This work was sponsored by the National Natural Science Foundation of China (Nos. 51806106 and 51806202), Natural Science Foundation of Jiangsu Province, China (Nos. BK20170838 and BK20170820), and the Open Fund of the State Key Laboratory of Fire Science (SKLFS) Program (No. HZ2017-KF06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyu Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 6 The activation energy of four stages with 5 K min−1 based on the CR method
Table 7 The activation energy of four stages with 10 K min−1 based on the CR method
Table 8 The activation energy of four stages with 20 K min−1 based on the CR method
Table 9 The activation energy of four stages with 40 K min−1 based on the CR method
Table 10 Determination of pyrolysis mechanism of different stages by plotting ln(g (α)) versus lnβ

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Pan, R., Chen, R. et al. Pyrolysis Characteristics and Reaction Mechanisms of Pine Needles. Appl Biochem Biotechnol 189, 1056–1083 (2019). https://doi.org/10.1007/s12010-019-03057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03057-3

Keywords

Navigation