Skip to main content
Log in

Development of Voltammetric Glucose-6-phosphate Biosensors Based on the Immobilization of Glucose-6-phosphate Dehydrogenase on Polypyrrole- and Chitosan-Coated Fe3O4 Nanoparticles/Polypyrrole Nanocomposite Films

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy) and PPy-containing chitosan-coated Fe3O4 have been electrochemically polymerized on pencil graphite electrodes (PGEs). After the resulting electrodes were characterized by SEM-EDS analysis, glucose-6-phosphate dehydrogenase (G6PD) was immobilized onto these electrodes via glutaraldehyde. The biosensors prepared for the chronopotentiometric detection of glucose-6-phosphate (G6P) at 0.25 mAcm−2 were studied and optimized at different parameters such as the pH of supporting electrolyte, the temperature, and NADP+ and G6P concentrations related with the analytical performance of the biosensors. PPy/G6PD (BS-1) and CS/Fe3O4-PPy/G6PD (BS-2) biosensors showed a broad linear response in the concentration range 0.025–0.25 mM and 0.0025–0.05 mM, and their detection limits for G6P and the RSD values were determined as 0.008 mM and 0.002 mM and 3.80% and 4.60% after 15 times usage, respectively. The interference study with various major blood components such as urea, glucose, and cysteine was performed to evaluate the selectivity of the biosensors. The proposed BS-2 biosensor showed almost free response from available interferences in blood serum with a recovery of 91 to 110%. The developed biosensors could be used in the G6P level measurement of medical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Srivastava, P. K., & Singh, S. (2013). Immobilization and applications of glucose-6-phosphate dehydrogenase: a review. Preparative Biochemistry & Biotechnology, 43(4), 376–384.

    Article  CAS  Google Scholar 

  2. Banerjee, S., Sarkar, P., & Turner, A. P. (2013). Amperometric biosensor based on Prussian blue nanoparticle-modified screen-printed electrode for estimation of glucose-6-phosphate. Analytical Biochemistry, 439(2), 194–200.

    Article  CAS  PubMed  Google Scholar 

  3. Cui, Y., Barford, J. P., & Renneberg, R. (2007). Development of a glucose-6-phosphate biosensor based on coimmobilized p-hydroxybenzoate hydroxylase and glucose-6-phosphate dehydrogenase. Biosensors & Bioelectronics, 22(11), 2754–2758.

    Article  CAS  Google Scholar 

  4. Bassi, A. S., Tang, D., & Bergougnou, M. A. (1999). Mediated, amperometric biosensor for glucose-6phosphate monitoring based on entrapped glucose-6phosphate dehydrogenase, Mg2+ ions, tetracyanoquinodimethane, and nicotinamide adenine dinucleotide phosphate in carbon paste. Analytical Biochemistry, 268(2), 223–228.

    Article  CAS  PubMed  Google Scholar 

  5. Tzang, C. H., Yuan, R., & Yang, M. (2001). Voltammetric biosensors for the determination of formate and glucose-6-phosphate based on the measurement of dehydrogenase-generated NADH and NADPH. Biosensors & Bioelectronics, 16(3), 211–219.

    Article  Google Scholar 

  6. Cui, Y., Barford, J. P., & Renneberg, R. (2007). Development of an interference-free biosensor for glucose-6-phosphate using a bienzyme-based Clark-type electrode. Sensors and Actuators B: Chemical, 123(2), 696–700.

    Article  CAS  Google Scholar 

  7. Suye, S.-i., Zheng, H., Okada, H., & Hori, T. (2005). Assembly of alternating polymerized mediator, polymerized coenzyme, and enzyme modified electrode by layer-by-layer adsorption technique. Sensors and Actuators B: Chemical, 108(1-2), 671–675.

    Article  CAS  Google Scholar 

  8. Aydemir, N., Malmstrom, J., & Travas-Sejdic, J. (2016). Conducting polymer based electrochemical biosensors. Physical Chemistry Chemical Physics, 18(12), 8264–8277.

    Article  CAS  PubMed  Google Scholar 

  9. Geetha, S., Rao, C. R., Vijayan, M., & Trivedi, D. C. (2006). Biosensing and drug delivery by polypyrrole. Analytica Chimica Acta, 568(1-2), 119–125.

    Article  CAS  PubMed  Google Scholar 

  10. Berkkan, A., Seçkin, A. I., Pekmez, K., & Tamer, U. (2009). Amperometric enzyme electrode for glucose determination based on poly(pyrrole-2-aminobenzoic acid). Journal of Solid State Electrochemistry, 14, 975–980.

    Article  CAS  Google Scholar 

  11. Abdul Amir Al-Mokaram, A. M. A., Yahya, R., Abdi, M. M., & Muhammad Ekramul Mahmud, H. N. (2016). One-step electrochemical deposition of polypyrrole–chitosan–iron oxide nanocomposite films for non-enzymatic glucose biosensor. Materials Letters, 183, 90–93.

    Article  CAS  Google Scholar 

  12. Montoya, P., Mejía, S., Gonçales, V. R., Torresi, S. I. C. d., & Calderón, J. A. (2015). Performance improvement of macroporous polypyrrole sensor for detection of ammonia by incorporation of magnetite nanoparticles. Sensors and Actuators B: Chemical, 213, 444–451.

    Article  CAS  Google Scholar 

  13. Tran, L. D., Nguyen, B. H., Van Hieu, N., Tran, H. V., Nguyen, H. L., & Nguyen, P. X. (2011). Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Materials Science and Engineering: C, 31(2), 477–485.

    Article  CAS  Google Scholar 

  14. Kaushik, A., Khan, R., Solanki, P. R., Pandey, P., Alam, J., Ahmad, S., & Malhotra, B. D. (2008). Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosensors & Bioelectronics, 24(4), 676–683.

    Article  CAS  Google Scholar 

  15. Cheng, Y., Liu, Y., Huang, J., Li, K., Xian, Y., Zhang, W., & Jin, L. (2009). Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochimica Acta, 54(9), 2588–2594.

    Article  CAS  Google Scholar 

  16. Wang, S., Tan, Y., Zhao, D., & Liu, G. (2008). Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosensors & Bioelectronics, 23(12), 1781–1787.

    Article  CAS  Google Scholar 

  17. Yang, L., Ren, X., Tang, F., & Zhang, L. (2009). A practical glucose biosensor based on Fe(3)O(4) nanoparticles and chitosan/nafion composite film. Biosensors & Bioelectronics, 25(4), 889–895.

    Article  CAS  Google Scholar 

  18. Zhang, W., Li, X., Zou, R., Wu, H., Shi, H., Yu, S., & Liu, Y. (2015). Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Scientific Reports, 5(1), 11129.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tan, X., Zhang, J., Tan, S., Zhao, D., Huang, Z., Mi, Y., & Huang, Z. (2009). Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modified glassy carbon electrode. Electroanalysis, 21(13), 1514–1520.

    Article  CAS  Google Scholar 

  20. Sahin, S., & Ozmen, I. (2016). Determination of optimum conditions for glucose-6-phosphate dehydrogenase immobilization on chitosan-coated magnetic nanoparticles and its characterization. Journal of Molecular Catalysis B: Enzymatic, 133, S25–S33.

    Article  Google Scholar 

  21. Montoya, P., Jaramillo, F., Calderón, J., Córdoba de Torresi, S. I., & Torresi, R. M. (2010). Evidence of redox interactions between polypyrrole and Fe3O4 in polypyrrole–Fe3O4 composite films. Electrochimica Acta, 55(21), 6116–6122.

    Article  CAS  Google Scholar 

  22. Patel, S. K., Choi, S. H., Kang, Y. C., & Lee, J. K. (2017). Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Applied Materials & Interfaces, 9(3), 2213–2222.

    Article  CAS  Google Scholar 

  23. Kim, Y. H., & Yoo, Y. J. (2009). Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode. Enzyme and Microbial Technology, 44(3), 129–134.

    Article  CAS  Google Scholar 

  24. Kim, Y. H., Kim, T., Ryu, J. H., & Yoo, Y. J. (2010). Iron oxide/carbon black (Fe2O3/CB) composite electrode for the detection of reduced nicotinamide cofactors using an amperometric method under a low overpotential. Biosensors & Bioelectronics, 25(5), 1160–1165.

    Article  CAS  Google Scholar 

  25. Liu, W., Zhang, S., & Wang, P. (2009). Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration. Journal of Biotechnology, 139(1), 102–107.

    Article  CAS  PubMed  Google Scholar 

  26. Haddaoui, M., Sola, C., Raouafi, N., & Korri-Youssoufi, H. (2018). E-DNA detection of rpoB gene resistance in mycobacterium tuberculosis in real samples using Fe3O4/polypyrrole nanocomposite. Biosensors & Bioelectronics, 128, 76–82.

    Article  CAS  Google Scholar 

  27. Kazuhito Aoki, Hiroko Suzuki, Yoshihiro Ishimaru, Shigeru Toyama, Yoshihito Ikariyama, Takeaki Iida, (2005) Thermophilic glucokinase-based sensors for the detection of various saccharides and glycosides. Sensors and Actuators B: Chemical 108(1–2), 727–732

  28. Aiping Zhu, Roberto Romero, Howard R. Petty, (2011) An enzymatic colorimetric assay for glucose-6-phosphate. Analytical Biochemistry 419(2), 266–270

  29. Aiping Zhu, Roberto Romero, Howard R. Petty, (2009) An enzymatic fluorimetric assay for glucose-6-phosphate: Application in an in vitro Warburg-like effect. Analytical Biochemistry 388(1), 97–101

  30. Carla Antonio, Tony Larson, Alison Gilday, Ian Graham, Ed Bergström, Jane Thomas-Oates, (2007) Quantification of sugars and sugar phosphates in Arabidopsis thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A 1172(2), 170–178

Download references

Funding

The authors thank the Suleyman Demirel University Research Funds (Project number: 4795-OYP-D2-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Ozmen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, S., Ozmen, I., Bastemur, G.Y. et al. Development of Voltammetric Glucose-6-phosphate Biosensors Based on the Immobilization of Glucose-6-phosphate Dehydrogenase on Polypyrrole- and Chitosan-Coated Fe3O4 Nanoparticles/Polypyrrole Nanocomposite Films. Appl Biochem Biotechnol 188, 1145–1157 (2019). https://doi.org/10.1007/s12010-019-02979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02979-2

Keywords

Navigation