Skip to main content

Advertisement

Log in

Mixture of Macromolecular Crowding Agents Has a Non-additive Effect on the Stability of Proteins

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The folding and unfolding of proteins inside a cell take place in the presence of macromolecules of various shapes and sizes. Such crowded conditions can significantly affect folding, stability, and biophysical properties of proteins. Thus, to logically mimic the intracellular environment, the thermodynamic stability of two different proteins (lysozyme and α-lactalbumin) was investigated in the presence of mixtures of three crowding agents (ficoll 70, dextran 70, and dextran 40) at different pH values. These crowders possess different shapes and sizes. It was observed that the stabilizing effect of mixtures of crowders is more than the sum effects of the individual crowder, i.e., the stabilizing effect is non-additive in nature. Moreover, dextran 40 (in the mixture) has been found to exhibit the greatest stabilization when compared with other crowders in the mixture. In other words, the small size of the crowder has been observed to be a dominant factor in stabilization of the proteins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GdmCl:

Guanidinium chloride

UV:

Ultra-violet

T m :

Midpoint of thermal denaturation

ΔH m :

Enthalpy change at Tm

ΔC p :

Constant-pressure heat capacity change

G D°:

Gibbs free energy change at 25 °C

F70:

Ficoll 70

D70:

Dextran 70

D40:

Dextran 40

References

  1. Fulton, A. (1982). How crowded is the cytoplasm ? Cell, 30(2), 345–347.

    Article  CAS  PubMed  Google Scholar 

  2. Minton, A. P. (1983). The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Molecular and Cellular Biochemistry, 55(2), 119–140.

    Article  CAS  PubMed  Google Scholar 

  3. Zimmerman, S. B., & Trach, S. O. (1991). Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. Journal of Molecular Biology, 222(3), 599–620.

    Article  CAS  PubMed  Google Scholar 

  4. Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G., & Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science, 298(5596), 1209–1213.

    Article  CAS  PubMed  Google Scholar 

  5. Ellis, R. J., & Minton, A. P. (2003). Cell biology: join the crowd. Nature, 425(6953), 27–28.

    Article  CAS  PubMed  Google Scholar 

  6. Rivas, G., Ferrone, F., & Herzfeld, J. (2004). Life in a crowded world. EMBO Reports, 5(1), 23–27.

    Article  CAS  PubMed  Google Scholar 

  7. Minton, A. P. (1981). Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers, 20(10), 2093–2120.

    Article  CAS  Google Scholar 

  8. Ellis, R. J. (2001). Macromolecular crowding: an important but neglected aspect of the intracellular environment. Current Opinion in Structural Biology, 11(1), 114–119.

    Article  CAS  PubMed  Google Scholar 

  9. Zimmerman, S. B., & Minton, A. P. (1993). Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annual Review of Biophysics and Biomolecular Structure, 22(1), 27–65.

    Article  CAS  PubMed  Google Scholar 

  10. Ellis, R. J. (2001). Macromolecular crowding: obvious but underappreciated. Trends in Biochemical Sciences, 26(10), 597–604.

    Article  CAS  PubMed  Google Scholar 

  11. Goodsell, D. S. (1991). Inside a living cell. Trends in Biochemical Sciences, 16(6), 203–206.

    Article  CAS  PubMed  Google Scholar 

  12. Chebotareva, N. A., Kurganov, B. I., & Livanova, N. B. (2004). Biochemical effects of molecular crowding. Biochemistry (Moscow), 69(11), 1239–1251.

    Article  CAS  Google Scholar 

  13. Christiansen, A., Wang, Q., Cheung, M. S., & Wittung-Stafshede, P. (2013). Effects of macromolecular crowding agents on protein folding in vitro and in silico. Biophysical Reviews, 5(2), 137–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuznetsova, I., Turoverov, K., & Uversky, V. (2014). What macromolecular crowding can do to a protein. International Journal of Molecular Sciences, 15(12), 23090–23140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuznetsova, I., Zaslavsky, B., Breydo, L., Turoverov, K., & Uversky, V. (2015). Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules, 20(1), 1377–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minton, A. P. (2001). The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. The Journal of Biological Chemistry, 276(14), 10577–10580.

    Article  CAS  PubMed  Google Scholar 

  17. Samiotakis, A., Wittung-Stafshede, P., & Cheung, M. S. (2009). Folding, stability and shape of proteins in crowded environments: experimental and computational approaches. International Journal of Molecular Sciences, 10(2), 572–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, H.-X., Rivas, G., & Minton, A. P. (2008). Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annual Review of Biophysics, 37(1), 375–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Du, F., Zhou, Z., Mo, Z. Y., Shi, J. Z., Chen, J., & Liang, Y. (2006). Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: implications for protein folding in physiological environments. Journal of Molecular Biology, 364(3), 469–482.

    Article  CAS  PubMed  Google Scholar 

  20. Fan, J., ZHOU, Z., Chen, J., YANG, Z.-Z. and Liang, Y. (2012) The contrasting effect of macromolecular crowding on protein misfolding. FEBS JOURNAL, pp. 408–408. WILEY-BLACKWELL 111 RIVER ST, HOBOKEN 07030–5774, NJ USA.

  21. Zhou, B.-R., Liang, Y., Du, F., Zhou, Z., & Chen, J. (2004). Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme: implications for protein folding in intracellular environments. Journal of Biological Chemistry, 279(53), 55109–55116.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, B. R., Zhou, Z., Hu, Q. L., Chen, J., & Liang, Y. (2008). Mixed macromolecular crowding inhibits amyloid formation of hen egg white lysozyme. Biochimica et Biophysica Acta, 1784(3), 472–480.

    Article  CAS  PubMed  Google Scholar 

  23. Batra, J., Xu, K., & Zhou, H. X. (2009). Nonadditive effects of mixed crowding on protein stability. Proteins, 77(1), 133–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, H. X. (2008). Effect of mixed macromolecular crowding agents on protein folding. Proteins, 72(4), 1109–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Privalov, P. L., & Khechinashvili, N. N. (1974). A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. Journal of Molecular Biology, 86(3), 665–684.

    Article  CAS  PubMed  Google Scholar 

  26. Beg, I., Minton, A. P., Hassan, M. I., Islam, A., & Ahmad, F. (2015). Thermal stabilization of proteins by mono- and oligosaccharides: measurement and analysis in the context of an excluded volume model. Biochemistry, 54(23), 3594–3603.

    Article  CAS  PubMed  Google Scholar 

  27. Beg, I., Minton, A. P., Islam, A., Hassan, M. I., & Ahmad, F. (2017). The pH dependence of saccharides’ influence on thermal denaturation of two model proteins supports an excluded volume model for stabilization generalized to allow for intramolecular electrostatic interactions. The Journal of Biological Chemistry, 292(2), 505–511.

    Article  CAS  PubMed  Google Scholar 

  28. Beg, I., Minton, A. P., Islam, A., Hassan, M. I., & Ahmad, F. (2018). Comparison of the thermal stabilization of proteins by oligosaccharides and monosaccharide mixtures: measurement and analysis in the context of excluded volume theory. Biophysical Chemistry, 237, 31–37.

    Article  CAS  PubMed  Google Scholar 

  29. Khan, S., Bano, Z., Singh, L. R., Hassan, M. I., Islam, A., & Ahmad, F. (2013). Testing the ability of non-methylamine osmolytes present in kidney cells to counteract the deleterious effects of urea on structure, stability and function of proteins. PLoS One, 8(9), e72533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shahid, S., Ahmad, F., Hassan, M. I., & Islam, A. (2015). Relationship between protein stability and functional activity in the presence of macromolecular crowding agents alone and in mixture: an insight into stability-activity trade-off. Archives of Biochemistry and Biophysics, 584, 42–50.

    Article  CAS  PubMed  Google Scholar 

  31. Singh, R., Haque, I., & Ahmad, F. (2005). Counteracting osmolyte trimethylamine N-oxide destabilizes proteins at pH below its pKa: measurements of thermodynamic parameters of proteins in the presence and absence of trimethylamine N-oxide. Journal of Biological Chemistry, 280(12), 11035–11042.

    Article  CAS  PubMed  Google Scholar 

  32. Arakawa, T., & Timasheff, S. N. (1982). Stabilization of protein structure by sugars. Biochemistry, 21(25), 6536–6544.

    Article  CAS  PubMed  Google Scholar 

  33. Mittal, S., & Singh, L. R. (2013). Denatured state structural property determines protein stabilization by macromolecular crowding: a thermodynamic and structural approach. PLoS One, 8(11), e78936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sasahara, K., McPhie, P., & Minton, A. P. (2003). Effect of dextran on protein stability and conformation attributed to macromolecular crowding. Journal of Molecular Biology, 326(4), 1227–1237.

    Article  CAS  PubMed  Google Scholar 

  35. Sharma, G. S., Mittal, S., & Singh, L. R. (2015). Effect of dextran 70 on the thermodynamic and structural properties of proteins. International Journal of Biological Macromolecules, 79, 86–94.

    Article  CAS  PubMed  Google Scholar 

  36. Dumitriu, S. (2004). Polysaccharides: Structural diversity and functional versatility, second edition. CRC Press.

  37. Luby-Phelps, K., Castle, P. E., Taylor, D. L., & Lanni, F. (1987). Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proceedings of the National Academy of Sciences of the United States of America, 84(14), 4910–4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Venturoli, D. and Rippe, B. (2005) Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. ed.

  39. Hamaguchi, K., & Kurono, A. (1963). Structure of muramidase (lysozyme) I. The effect of guanidine hydrochloride on muramidase. The Journal of Biochemistry, 54, 111–122.

    CAS  PubMed  Google Scholar 

  40. Sugai, S., Yashiro, H., & Nitta, K. (1973). Equilibrium and kinetics of the unfolding of α-lactalbumin by guanidine hydrochloride. Biochimica et Biophysica Acta (BBA) - Protein Structure, 328(1), 35–41.

    Article  CAS  Google Scholar 

  41. Nozaki, Y. (1972). The preparation of guanidine hydrochloride. Methods in Enzymology, 26, 43–50.

    Article  CAS  PubMed  Google Scholar 

  42. A guide to multi-detector gel permeation chromatography 2012. Available from: www.agilent.com/chem.

  43. Fissell, W. H., Hofmann, C. L., Smith, R., & Chen, M. H. (2010). Size and conformation of Ficoll as determined by size-exclusion chromatography followed by multiangle light scattering. American Journal of Physiology - Renal Physiology, 298(1), F205–F208.

    Article  CAS  PubMed  Google Scholar 

  44. Sinha, A., Yadav, S., Ahmad, R., & Ahmad, F. (2000). A possible origin of differences between calorimetric and equilibrium estimates of stability parameters of proteins. Biochemical Journal, 345(3), 711–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yadav, S., & Ahmad, F. (2000). A new method for the determination of stability parameters of proteins from their heat-induced denaturation curves. Analytical Biochemistry, 283(2), 207–213.

    Article  CAS  PubMed  Google Scholar 

  46. Becktel, W. J., & Schellman, J. A. (1987). Protein stability curves. Biopolymers, 26(11), 1859–1877.

    Article  CAS  PubMed  Google Scholar 

  47. Hiraoka, Y., & Sugai, S. (1984). Thermodynamics of thermal unfolding of bovine apo-α-lactalbumin. International Journal of Peptide and Protein Research, 23(5), 535–542.

    Article  CAS  PubMed  Google Scholar 

  48. Privalov, P. L. (1979). Stability of proteins: small globular proteins. Advances in Protein Chemistry, 33, 167–241.

    Article  CAS  PubMed  Google Scholar 

  49. Homchaudhuri, L., Sarma, N., & Swaminathan, R. (2006). Effect of crowding by dextrans and Ficolls on the rate of alkaline phosphatase-catalyzed hydrolysis: a size-dependent investigation. Biopolymers, 83(5), 477–486.

    Article  CAS  PubMed  Google Scholar 

  50. Shahid, S., Hassan, M. I., Islam, A., & Ahmad, F. (2017). Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: in vitro and in silico approaches. Biochimica et Biophysica Acta (BBA) - General Subjects, 1861(2), 178–197.

    Article  CAS  Google Scholar 

  51. Alfano, C., Sanfelice, D., Martin, S. R., Pastore, A., & Temussi, P. A. (2017). An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states. Nature Communications, 8, 15428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghahghaei, A., & Mohammadian, S. (2014). The effect of Arg on the structure perturbation and chaperone activity of α-crystallin in the presence of the crowding agent, dextran. Applied Biochemistry and Biotechnology, 174(2), 739–750.

    Article  CAS  PubMed  Google Scholar 

  53. Kumar, K., Bhargava, P., & Roy, U. (2011). In vitro refolding of Triosephosphate isomerase from L. donovani. Applied Biochemistry and Biotechnology, 164(7), 1207–1214.

    Article  CAS  PubMed  Google Scholar 

  54. Fan, Y.-Q., Liu, H.-J., Li, C., Luan, Y.-S., Yang, J.-M., & Wang, Y.-L. (2013). Inactivation of recombinant human brain-type creatine kinase during denaturation by guanidine hydrochloride in a macromolecular crowding system. Applied Biochemistry and Biotechnology, 169(1), 268–280.

    Article  CAS  PubMed  Google Scholar 

  55. Kumar, R., Sharma, D., Garg, M., Kumar, V., & Agarwal, M. C. (2018). Macromolecular crowding-induced molten globule states of the alkali pH-denatured proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1866(11), 1102–1114.

    Article  CAS  Google Scholar 

  56. Benton, L. A., Smith, A. E., Young, G. B., & Pielak, G. J. (2012). Unexpected effects of macromolecular crowding on protein stability. Biochemistry, 51(49), 9773–9775.

    Article  CAS  PubMed  Google Scholar 

  57. Charlton, L. M., Barnes, C. O., Li, C., Orans, J., Young, G. B., & Pielak, G. J. (2008). Residue-level interrogation of macromolecular crowding effects on protein stability. Journal of the American Chemical Society, 130(21), 6826–6830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miklos, A. C., Li, C., Sharaf, N. G., & Pielak, G. J. (2010). Volume exclusion and soft interaction effects on protein stability under crowded conditions. Biochemistry, 49(33), 6984–6991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miklos, A. C., Sarkar, M., Wang, Y., & Pielak, G. J. (2011). Protein crowding tunes protein stability. Journal of the American Chemical Society, 133(18), 7116–7120.

    Article  CAS  PubMed  Google Scholar 

  60. Sarkar, M., Li, C., & Pielak, G. J. (2013). Soft interactions and crowding. Biophysical Reviews, 5(2), 187–194.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sarkar, M., Lu, J., & Pielak, G. J. (2014). Protein crowder charge and protein stability. Biochemistry, 53(10), 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  62. Sarkar, M., Smith, A. E., & Pielak, G. J. (2013). Impact of reconstituted cytosol on protein stability. Proceedings of the National Academy of Sciences, 110(48), 19342–19347.

    Article  CAS  Google Scholar 

  63. Schlesinger, A. P., Wang, Y., Tadeo, X., Millet, O., & Pielak, G. J. (2011). Macromolecular crowding fails to fold a globular protein in cells. Journal of the American Chemical Society, 133(21), 8082–8085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Y., Sarkar, M., Smith, A. E., Krois, A. S., & Pielak, G. J. (2012). Macromolecular crowding and protein stability. Journal of the American Chemical Society, 134(40), 16614–16618.

    Article  CAS  PubMed  Google Scholar 

  65. Ignatova, Z., & Gierasch, L. M. (2004). Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 523–528.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grant from the Science & Engineering Research Board (SERB), India (SR/FT/LS-48/2010), FIST Program (SR/FST/LSI-541/2012), and Council of Scientific and Industrial Research (CSIR), India (37(1604)/13/EMR-II). SS is thankful to Maulana Azad National Fellowship, University Grants Commission (Government of India), for providing fellowship. FA is grateful to Indian National Science Academy for the award of Senior Scientist Position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimul Islam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, S., Ahmad, F., Hassan, M.I. et al. Mixture of Macromolecular Crowding Agents Has a Non-additive Effect on the Stability of Proteins. Appl Biochem Biotechnol 188, 927–941 (2019). https://doi.org/10.1007/s12010-019-02972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02972-9

Keywords

Navigation