Skip to main content
Log in

Soft interactions and crowding

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The intracellular milieu is complex, heterogeneous and crowded—an environment vastly different from dilute solutions in which most biophysical studies are performed. The crowded cytoplasm excludes about a third of the volume available to macromolecules in dilute solution. This excluded volume is the sum of two parts: steric repulsions and chemical interactions, also called soft interactions. Until recently, most efforts to understand crowding have focused on steric repulsions. Here, we summarize the results and conclusions from recent studies on macromolecular crowding, emphasizing the contribution of soft interactions to the equilibrium thermodynamics of protein stability. Despite their non-specific and weak nature, the large number of soft interactions present under many crowded conditions can sometimes overcome the stabilizing steric, excluded volume effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Non-specific attractive interactions are fundamentally different from ligand binding, because ligands bind only to N. Application of Le Chatelier’s principle leads to the conclusion that ligand binding stabilizes proteins by favoring N.

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Barnes CO, Pielak GJ (2011) In-cell protein NMR and protein leakage. Proteins Struct Funct Bioinforma 79:347–351

    Article  CAS  Google Scholar 

  • Barnes CO, Monteith WB, Pielak GJ (2011) Internal and global protein motion assessed with a fusion construct and in-cell NMR spectroscopy. ChemBioChem 12:390–391

    Article  PubMed  CAS  Google Scholar 

  • Benton LA, Smith AE, Young GB, Pielak GJ (2012) Unexpected effects of macromolecular crowding on protein stability. Biochemistry 51:9773–9775

    Article  PubMed  CAS  Google Scholar 

  • Berg OG (1990) The influence of macromolecular crowding on thermodynamic activity: solubility and dimerization constants for spherical and dumbbell-shaped molecules in a hard-sphere mixture. Biopolymers 30:1027–1037

    Article  PubMed  CAS  Google Scholar 

  • Charlton LM, Barnes CO, Li C, Orans J, Young GB, Pielak GJ (2008) Residue-level interrogation of macromolecular crowding effects on protein stability. J Am Chem Soc 130:6826–6830

    Article  PubMed  CAS  Google Scholar 

  • Christiansen A, Wang Q, Samiotakis A, Cheung MS, Wittung-Stafshede P (2010) Factors defining effects of macromolecular crowding on protein stability: an in vitro/in silico case study using cytochrome C. Biochemistry 49:6519–6530

    Article  PubMed  CAS  Google Scholar 

  • Courtenay ES, Capp MW, Anderson CF, Record MTJ (2000) Vapor pressure osmometry studies of osmolyte–protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro. Biochemistry 39:4455–4471

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (2010) The biophysical chemistry of nucleic acids and proteins. Helvetian Press

  • Crowley PB, Brett K, Muldoon J (2008) NMR spectroscopy reveals cytochrome C-poly(ethylene glycol) interactions. ChemBioChem 9:685–688

    Article  PubMed  CAS  Google Scholar 

  • Crowley PB, Chow E, Papkovskaia T (2011) Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy. ChemBioChem 12:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ (2001) Interpreting the effects of small uncharged solutes on protein-folding equilibria. Annu Rev Biophys Biomol Struct 30:271–306

    Article  PubMed  CAS  Google Scholar 

  • Dedmon MM, Patel CN, Young GB, Pielak GJ (2002) Flgm gains structure in living cells. Proc Natl Acad Sci USA 99:12681–12684

    Article  PubMed  CAS  Google Scholar 

  • Dhar A, Girdhar K, Singh D, Gelman H, Ebbinghaus S, Gruebele M (2011) Protein stability and folding kinetics in the nucleus and endoplasmic reticulum of eucaryotic cells. Biophys J 101:421–430

    Article  PubMed  CAS  Google Scholar 

  • Ebbinghaus S, Dhar A, McDonald JD, Gruebele M (2010) Protein folding stability and dynamics imaged in a living cell. Nat Methods 7:319–323

    Article  PubMed  CAS  Google Scholar 

  • Feig M, Sugita Y (2012) Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding. J Phys Chem B 116:599–605

    Article  PubMed  CAS  Google Scholar 

  • Fleming PJ, Rose JD (2008) Conformational properties of unfolded proteins. Wiley-VCH

  • Ghaemmaghami S, Oas TG (2001) Quantitative protein stability measurement in vivo. Nat Struct Biol 8:879–882

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Xu Y, Gruebele M (2012) Temperature dependence of protein folding kinetics in living cells. Proc Natl Acad Sci USA 109:17863–17867

    Article  PubMed  CAS  Google Scholar 

  • Harada R, Sugita Y, Feig M (2012) Protein crowding affects hydration structure and dynamics. J Am Chem Soc 134:4842–4849

    Article  PubMed  CAS  Google Scholar 

  • Hermans J (1982) Excluded volume theory of polymer–protein interactions based on polymer chain statistics. J Chem Phys 77:2193–2203

    Article  CAS  Google Scholar 

  • Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y (2010) Cytochrome C polymerization by successive domain swapping at the C-terminal helix. Proc Natl Acad Sci USA 107:12854–12859

    Article  PubMed  CAS  Google Scholar 

  • Homouz D, Perham M, Samiotakis A, Cheung MS, Wittung-Stafshede P (2008) Crowded, cell-like environment induces shape changes in aspherical protein. Proc Natl Acad Sci USA 105:11754–11759

    Article  PubMed  CAS  Google Scholar 

  • Ignatova Z, Gierasch LM (2004) Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA 101:523–528

    Article  PubMed  CAS  Google Scholar 

  • Ignatova Z, Krishnan B, Bombardier JP, Marcelino AMC, Hong J, Gierasch LM (2007) From the test tube to the cell: exploring the folding and aggregation of a Β-clam protein. Biopolymers 88:157–163

    Article  PubMed  CAS  Google Scholar 

  • Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H, Shirakawa M (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109

    Article  PubMed  CAS  Google Scholar 

  • Jiao M, Li HT, Chen J, Minton AP, Liang Y (2010) Attractive protein–polymer interactions markedly alter the effect of macromolecular crowding on protein association equilibria. Biophys J 99:914–923

    Article  PubMed  CAS  Google Scholar 

  • Lebowitz JL, Helfand E, Praestgaard E (1965) Scaled particle theory of fluid mixtures. J Chem Phys 43:774–779

    Article  CAS  Google Scholar 

  • Li C, Pielak GJ (2009) Using NMR to distinguish viscosity effects from nonspecific protein binding under crowded conditions. J Am Chem Soc 131:1368–1369

    Article  PubMed  CAS  Google Scholar 

  • Li C, Charlton LM, Lakkavaram A, Seagle C, Wang G, Young GB, Macdonald JM, Pielak GJ (2008) Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR spectroscopy. J Am Chem Soc 130:6310–6311

    Article  PubMed  CAS  Google Scholar 

  • Lian L-Y (2013) NMR studies of weak protein–protein interactions. Prog Nucl Magn Reson Spectrosc (in press)

  • Makhatadze GI, Privalov PL (1992) Protein interactions with urea and guanidinium chloride: a calorimetric study. J Mol Biol 226:491–505

    Article  PubMed  CAS  Google Scholar 

  • Mayer JE (1942) Contribution to statistical mechanics. J Chem Phys 10:629–643

    Article  CAS  Google Scholar 

  • McGuffee SR, Elcock AH (2010) Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput Biol 6:e1000694

    Article  PubMed  Google Scholar 

  • McMillan WG, Mayer JE (1945) The statistical thermodynamics of multicomponent systems. J Chem Phys 13:276–305

    Article  CAS  Google Scholar 

  • Miklos AC, Li C, Sharaf NG, Pielak GJ (2010) Volume exclusion and soft interaction effects on protein stability under crowded conditions. Biochemistry 49:6984–6991

    Article  PubMed  CAS  Google Scholar 

  • Miklos AC, Sarkar M, Wang Y, Pielak GJ (2011) Protein crowding tunes protein stability. J Am Chem Soc 133:7116–7120

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (1981) Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 20:2093–2120

    Article  CAS  Google Scholar 

  • Minton AP (1995) A molecular model for the dependence of the osmotic pressure of bovine serum albumin upon concentration and pH. Biophys Chem 57:65–70

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2013) Quantitative assessment of the relative contributions of steric repulsion and chemical interactions to macromolecular crowding. Biopolymers 99: 239–244

    Google Scholar 

  • Pielak GJ, Miklos AC (2010) Crowding and function reunite. Proc Natl Acad Sci USA 107:17457–17458

    Article  PubMed  CAS  Google Scholar 

  • Pielak GJ, Li C, Miklos AC, Schlesinger AP, Slade KM, Wang GF, Zigoneanu IG (2009) Protein nuclear magnetic resonance under physiological conditions. Biochemistry 48:226–234

    Article  PubMed  CAS  Google Scholar 

  • Politi R, Harries D (2010) Enthalpically driven peptide stabilization by protective osmolytes. Chem Commun (Camb) 46:6449–6451

    Article  CAS  Google Scholar 

  • Reiss H (1966) Scaled particle methods in the statistical thermodynamics of fluids. Adv Chem Phys 9:1–84

    Article  Google Scholar 

  • Richards FM (1977) Areas, volumes, packing, and protein structure. Annu Rev Biophys Bioeng 6:151–176

    Article  PubMed  CAS  Google Scholar 

  • Rivas G, Fernandez JA, Minton AP (2001) Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein Ftsz. Proc Natl Acad Sci USA 98:3150–3155

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  • Rule GS, Hitchens TK (2006) Fundamentals of protein NMR spectroscopy. Springer, Dordrecht

    Google Scholar 

  • Sasahara K, McPhie P, Minton AP (2003) Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J Mol Biol 326:1227–1237

    Article  PubMed  CAS  Google Scholar 

  • Scatchard G (1946) Physical chemistry of protein solutions; derivation of the equations for the osmotic pressure. J Am Chem Soc 68:2315–2319

    Article  PubMed  CAS  Google Scholar 

  • Schellman J (2003) Protein stability in mixed solvents: a balance of contact interactions and excluded volume. Biophys J 85:108–125

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger AP, Wang Y, Tadeo X, Millet O, Pielak GJ (2011) Macromolecular crowding fails to fold a globular protein in cells. J Am Chem Soc 133:8082–8085

    Article  PubMed  CAS  Google Scholar 

  • Spitzer J, Poolman B (2009) The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life’s emergence. Microbiol Mol Biol Rev 73:371–388

    Article  PubMed  CAS  Google Scholar 

  • Stagg L, Zhang SQ, Cheung MS, Wittung-Stafshede P (2007) Molecular crowding enhances native structure and stability of alpha/beta protein flavodoxin. Proc Natl Acad Sci USA 104:18976–18981

    Article  PubMed  CAS  Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci USA 103:13997–14002

    Article  PubMed  CAS  Google Scholar 

  • Sukenik S, Liel S, Gilman-Polit R, Harries D (2012) Diversity in the mechanisms of cosolute action on biomolecular processes. Faraday Discuss 160:1–13

    Google Scholar 

  • Tadeo X, Lopez-Mendez B, Trigueros T, Lain A, Castano D, Millet O (2009) Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS Biol 7:e1000257

    Article  PubMed  Google Scholar 

  • Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents control these processes? Annu Rev Biophys Biomol Struct 22:67–97

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li C, Pielak GJ (2010) Effects of proteins on protein diffusion. J Am Chem Soc 132:9392–9397

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhuravleva A, Gierasch LM (2011) Exploring weak, transient protein–protein interactions in crowded in vivo environments by in-cell nuclear magnetic resonance spectroscopy. Biochemistry 50:9225–9236

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sarkar M, Smith AE, Krois AS, Pielak GJ (2012) Macromolecular crowding and protein stability. J Am Chem Soc 134:16614–16618

    Article  PubMed  CAS  Google Scholar 

  • Weatherly GT, Pielak GJ (2001) Second virial coefficients as a measure of protein–osmolyte interactions. Protein Sci 10:12–16

    Article  PubMed  CAS  Google Scholar 

  • Winzor DJ, Wills PR (1995) Thermodynamic non-ideality and protein interactions. In: Gregory RB (ed) Protein–solvent interactions. Marcel Dekker, New York

    Google Scholar 

  • Zhang DL, Wu LJ, Chen J, Liang Y (2012) Effects of macromolecular crowding on the structural stability of human alpha-lactalbumin. Acta Biochim Biophys Sin (Shanghai) 44:703–711

    Article  CAS  Google Scholar 

  • Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Mohona, Conggang and I (G.J.P.) wish Allen a happy birthday, and we hope he has many more. Allen has profoundly affected my research. It started after hearing his lecture at the 1992 Biopolymers Gordon Conference. I remember thinking, “Pioneering stuff. If I earn tenure I want to work in this area.” I did earn tenure, and over 20 years later, I still work in this now-crowded field. I thank Allen for all his help over those years, especially his infinite patience in explaining the subtle and not so subtle aspects of crowding. My wife, Elizabeth, and I are also grateful for the kindness Allen and Sima have shown both on the road and at home. We thank Michael Rubinstein and Edward Samulski for helpful discussion on soft interactions and excluded volume, and Elizabeth Pielak for comments on the manuscript. G.J.P. thanks Science Foundation Ireland for an E.T.S Walton Visitor Award, which supported his stay in Galway where the outline of this review took shape, and Peter Crowley and his group at NUIG for their hospitality. Our research is supported by the National Science Foundation of the United Sates (MCB-1051819) and the National Natural Sciences Foundation of China (21075134 and 21173258).

Conflict of interest

Authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Pielak.

Additional information

Special Issue: Protein–Protein and Protein–Ligand Interactions in Dilute and Crowded Solution Conditions. In Honor of Allen Minton’s 70th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, M., Li, C. & Pielak, G.J. Soft interactions and crowding. Biophys Rev 5, 187–194 (2013). https://doi.org/10.1007/s12551-013-0104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-013-0104-4

Keywords

Navigation