Skip to main content
Log in

Characterization of Two Polyketide Synthases Involved in Sorbicillinoid Biosynthesis by Acremonium chrysogenum Using the CRISPR/Cas9 System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Acremonium chrysogenum is an important fungal strain used for cephalosporin C production. Many efforts have been made to develop versatile genome-editing tools to better understand the mechanism of A. chrysogenum. Here, we developed a feasible and efficient CRISPR/Cas9 system. Two genes responsible for the synthesis of yellow pigments (sorbicillinoids) were chosen as targets, and plasmids expressing both the Cas9 protein and single-guide RNAs were constructed. After introducing the plasmids into the protoplasts of A. chrysogenum, 83 to 93% albino mutants harboring the expected genomic alteration, on average, were obtained. We have generated two mutant strains that respectively disrupt sorA and sorB by flexible CRISPR/Cas9 system. We further confirmed that the sorbicillinoid biosynthetic gene cluster is regulated by an autoinduction mechanism. This work will lay a solid foundation for gene function research and regulation in the sorbicillinoid biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/Cas9

sgRNAs:

Single-guide RNAs

RGR :

Ribozyme-gRNA-Ribozyme

HH:

Hammerhead

HDV:

Hepatitis delta virus

PKS:

Polyketide synthase

CGMCC:

China General Microbiological Culture Collection Center

HR:

Highly reducing

NR:

Non-reducing

References

  1. Terfehr, D., Dahlmann, T. A., Specht, T., & Zadra, I. (2014). Genome sequence and annotation of Acremonium chrysogenum, producer of the β-lactam antibiotic cephalosporin C. Genome Announcements, 2, 5.

    Article  Google Scholar 

  2. Poggeler, S., & Kuck, U. (2006). Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene, 378, 1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Hoff, B., Kamerewerd, J., Sigl, C., & Zadra, I. (2010). Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain DeltaPcku70 shows up-regulation of genes from the HOG pathway. Applied Microbiology and Biotechnology, 85(4), 1081–1094.

    Article  CAS  PubMed  Google Scholar 

  4. Bloemendal, S., Loper, D., Terfehr, D., & Kopke, K. (2014). Tools for advanced and targeted genetic manipulation of the beta-lactam antibiotic producer Acremonium chrysogenum. Journal of Biotechnology, 169, 51–62.

    Article  CAS  PubMed  Google Scholar 

  5. Katayama, T., Tanaka, Y., Okabe, T., & Nakamura, H. (2016). Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnology Letters, 38(4), 637–642.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, F., Wen, Y., & Guo, X. (2014). CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 23(R1), R40–R46.

    Article  CAS  PubMed  Google Scholar 

  7. Gao, Y., & Zhao, Y. (2014). Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. Journal of Integrative Plant Biology, 56(4), 343–349.

    Article  CAS  PubMed  Google Scholar 

  8. Abe, N., Yamamoto, K., & Hirota, A. (2000). Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690. Bioscience, Biotechnology, and Biochemistry, 64(3), 620–622.

    Article  CAS  PubMed  Google Scholar 

  9. Guzman-Chavez, F., Salo, O., Nygard, Y., & Lankhorst, P. P. (2017). Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microbial Biotechnology, 10(4), 958–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harned, A. M., & Volp, K. A. (2011). The sorbicillinoid family of natural products: Isolation, biosynthesis, and synthetic studies. Natural Product Reports, 28(11), 1790–1810.

    Article  CAS  PubMed  Google Scholar 

  11. Du, L., Zhu, T., Li, L., & Cai, S. (2009). Cytotoxic sorbicillinoids and bisorbicillinoids from a marine-derived fungus Trichoderma sp. Chemical & Pharmaceutical Bulletin, 57(2), 220–223.

    Article  CAS  Google Scholar 

  12. Nicoletti, R., & Trincone, A. (2016). Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Marine Drugs, 14(2), 37.

    Article  CAS  PubMed Central  Google Scholar 

  13. Druzhinina, I. S., Kubicek, E. M., & Kubicek, C. P. (2016). Several steps of lateral gene transfer followed by events of ‘birth-and-death’ evolution shaped a fungal sorbicillinoid biosynthetic gene cluster. BMC Evolutionary Biology, 16(1), 269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Derntl, C., Guzman-Chavez, F., Mello-De-Sousa, T. M., & Busse, H. J. (2017). In vivo study of the sorbicillinoid gene cluster in Trichoderma reesei. Frontiers in Microbiology, 8, 2037.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang, H., Pan, Y., Hu, P., & Zhu, Y. (2014). The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum. Fungal Genetics and Biology, 69, 65–74.

    Article  CAS  PubMed  Google Scholar 

  16. Schmittgen, T. D., & Livak, K. J. (2007). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108.

    Article  CAS  Google Scholar 

  17. Hu, Y., & Zhu, B. (2016). Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer. Synthetic and Systems Biology, 1(3), 143–149.

    Article  Google Scholar 

  18. Xie, K., & Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 6(6), 1975–1983.

    Article  CAS  PubMed  Google Scholar 

  19. DiCarlo, J. E., Norville, J. E., Mali, P., & Rios, X. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 41(7), 4336–4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, R., Chen, L., Jiang, Y., & Zhou, Z. (2015). Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discovery, 1(1), 15007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fuller, K. K., Chen, S., Loros, J. J., & Dunlap, J. C. (2015). Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryotic Cell, 14(11), 1073–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arazoe, T., Miyoshi, K., Yamato, T., & Ogawa, T. (2015). Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnology and Bioengineering, 112(12), 2543–2549.

    Article  CAS  PubMed  Google Scholar 

  23. Matsu-Ura, T., Baek, M., Kwon, J., & Hong, C. (2015). Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biology and Biotechnology, 2(1), 4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pohl, C., Kiel, J. A. K. W., Driessen, A. J. M., & Bovenberg, R. A. L. (2016). CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synthetic Biology, 5(7), 754–764.

    Article  CAS  PubMed  Google Scholar 

  25. Fahad, A. A., Abood, A., Fisch, K. M., & Osipow, A. (2013). Oxidative dearomatisation: the key step of sorbicillinoid biosynthesis. Chemical Science, 5(2), 523–527.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Abe, N., & Hirota, A. (2002). Chemical studies of the radical scavenging mechanism of bisorbicillinol using the 1,1-diphenyl-2-picrylhydrazyl radical. Chemical Communications, 6, 662–663.

    Article  CAS  Google Scholar 

  27. Derntl, C., Rassinger, A., Srebotnik, E., & Mach, L. (2016). Identification of the main regulator responsible for synthesis of the typical yellow pigment produced by Trichoderma reesei. Applied and Environmental Microbiology, 82(20), 6247–6257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge our colleague Dr. Liming Ouyang at ECUST China for her constructive discussion on this work.

Funding

This work was financially subsidized by NOW-MoST Joint Program (2013DFG32630) and partially supported by National Basic Research Program (973 program 2012CB721006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Chu.

Ethics declarations

We confirm that this manuscript has not been published elsewhere and is not under consideration by another journal. All authors have approved the manuscript and agree with submission to Applied Biochemistry and Biotechnology.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Chu, J. Characterization of Two Polyketide Synthases Involved in Sorbicillinoid Biosynthesis by Acremonium chrysogenum Using the CRISPR/Cas9 System. Appl Biochem Biotechnol 188, 1134–1144 (2019). https://doi.org/10.1007/s12010-019-02960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02960-z

Keywords

Navigation