Skip to main content
Log in

Enzymatic Activity of Urokinase Immobilized onto Cu2+-Chelated Cibacron Blue F3GA–Derived Poly (HEMA) Magnetic Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this presented work, magnetic poly(2-hydroxyethyl methacrylate) (p (HEMA)) nanoparticles were synthesized by surfactant-free emulsion polymerization technique. Cibacron Blue F3GA was covalently attached to the magnetic p (HEMA) nanoparticles and Cu2+ ions were then chelated with dye molecules. Synthesized magnetic nanoparticles were spherical with the diameter of 80 nm and exhibited magnetic character. Incorporation rate of Cibacron Blue for magnetic nanoparticles was found to be 28.125-μmol/g polymer. Loaded amount of Cu2+ ions was calculated as 10.229-μmol/g polymer. These Cu2+-Cibacron Blue F3GA–derived magnetic p (HEMA) nanoparticles were used for urokinase adsorption under different conditions (i.e., pH, enzyme initial concentration, ionic strength, temperature). Maximum adsorption capacity was found to be 630.43-mg/g polymer, and it was observed that Langmuir adsorption isotherm was applicable in this adsorption process. The adsorbed urokinase was desorbed from the Cu2+-Cibacron Blue F3GA–derived magnetic p (HEMA) nanoparticles by using 1.0 M of NaCl with the desorption rate of 96%. It was also demonstrated that adsorption capacity did not change significantly after five adsorption/desorption cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jin, H. J., Zhang, H., Sun, M. L., Zhang, B. G., & Zhang, J. W. (2013). Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. The Journal of Physical Chemistry. B, 120, 3303–3310.

    Google Scholar 

  2. Li, H., Hu, Z., Yuan, J., Fan, H., Chen, W., Wang, S., Zheng, S., Zheng, Z., & Zuo, G. (2007). A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: purification and characterization. Phytotherapy Research, 21(12), 1234–1241.

    Article  CAS  PubMed  Google Scholar 

  3. Peng, Y., Yang, X., & Zhang, Y. (2005). Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo. Applied Microbiology and Biotechnology, 69(2), 126–132.

    Article  CAS  PubMed  Google Scholar 

  4. Fernandes, E. G. R., de Queiroz, A. A. A., Abraham, G. A., & Román, J. S. (2006). Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. Journal of Materials Science. Materials in Medicine, 17(2), 105–111.

    Article  CAS  PubMed  Google Scholar 

  5. Ren, L., Wang, X., Wu, H., Shang, B., & Wang, J. (2010). Conjugation of nattokinase and lumbrukinase with magnetic nanoparticles for the assay of their thrombolytic activities. Journal of Molecular Catalysis B: Enzymatic, 62(2), 190–196.

    Article  CAS  Google Scholar 

  6. Aisina, R. B., Moukhametova, L. I., Firsova, E. F., & Varfolomeyev, S. D. (2000). Prolonged plasma clot lysis induced by acyl-derivatives of urokinase in vitro. Applied Biochemistry and Biotechnology, 88(1-3), 137–143.

    Article  CAS  Google Scholar 

  7. Chitte, R. R., Deshmukh, S. V., & Kanekar, P. P. (2011). Production, purification, and biochemical characterization of a fibrinolytic enzyme from thermophilic Streptomyces sp. MCMB-379. Applied Biochemistry and Biotechnology, 165(5-6), 1406–1413.

    Article  CAS  PubMed  Google Scholar 

  8. Kunamneni, A., Ravuri, B. D., Saisha, V., Ellaiah, P., & Prabhakhar, T. (2008). Urokinase-a very popular cardiovascular agent. Recent Patents on Cardiovascular Drug Discovery, 3(1), 45–58.

    Article  CAS  PubMed  Google Scholar 

  9. Christman, J. K., & Acs, G. (1974). Purification and characterization of a cellular fibrinolytic factor associated with oncogenic transformation: the plasminogen activator from SV-40-transformed hamster cells. Biochimica et Biophysica Acta, 340(3), 339–347.

    Article  CAS  PubMed  Google Scholar 

  10. Bernik, M. B., & Kwaan, H. C. (1969). Plasminogen activator activity in cultures from human tissues. An immunological and histochemical study. The Journal of Clinical Investigation, 48(9), 1740–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Astedt, B., Pandolfi, J., & Nilsson, I. M. (1972). Inhibitory effect of placenta on plasminogen activation in human organ culture. Proceedings of the Society for Experimental Biology and Medicine, 139(4), 1421–1424.

    Article  CAS  PubMed  Google Scholar 

  12. Kohno, T., Hopper, P., Lillquist, J. S., Suddith, R. L., Greenlee, R., & Moir, D. T. (1984). Kidney plasminogen activator: a precursor form of human urokinase with high fibrin affinity. Biotechnology, 2, 628–634.

    CAS  Google Scholar 

  13. Booyse, F. M., Lin, P. H., Traylor, M., & Bruce, R. (1988). Purification and properties of a single-chain urokinase-type plasminogen activator form produced by subcultured human umbilical vein endothelial cells. The Journal of Biological Chemistry, 263(29), 15139–15145.

    CAS  PubMed  Google Scholar 

  14. Garcia-Diego, C., & Cuellar, J. (2008). Preparation and characterization of a dye–ligand adsorbent for lysozyme adsorption. Chemical Engineering Journal, 143(1-3), 337–348.

    Article  CAS  Google Scholar 

  15. Perçin, I., Sener, G., Demirçelik, A. H., Bereli, N., & Denizli, A. (2015). Comparison of two different reactive dye immobilized poly (hydroxyethyl methacrylate) cryogel discs for purification of lysozyme. Applied Biochemistry and Biotechnology, 175(6), 2795–2805.

    Article  CAS  PubMed  Google Scholar 

  16. Subramanian, S. (1984). Dye-ligand affinity chromatography: the interaction of Cibacron Blue F3GA with proteins and enzymes. CRC Critical Reviews in Biochemistry, 16(2), 169–205.

    Article  CAS  PubMed  Google Scholar 

  17. Govan, J., & Gun'ko, Y. K. (2014). Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Journal of Nanomaterials, 4(2), 222–241.

    Article  CAS  Google Scholar 

  18. Johnson, A. K., Zawadzka, A. M., Deobald, L. A., Crawford, R. L., & Paszczynski, A. J. (2008). Novel method for immobilization of enzymes to magnetic nanoparticles. Journal of Nanoparticle Research, 10(6), 1009–1025.

    Article  CAS  Google Scholar 

  19. Konwarh, R., Karak, N., Rai, S. K., & Mukherjee, A. K. (2009). Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology, 20, 225–235.

    Article  CAS  Google Scholar 

  20. Bruno, L. M., Coelho, J. S., Melo, E. H. M., & Lima-Filho, J. L. (2005). Characterization of Mucor miehei lipase immobilized on polysiloxane-polyvinyl alcohol magnetic particles. World Journal of Microbiology and Biotechnology, 21(2), 189–192.

    Article  CAS  Google Scholar 

  21. Chakraborty, M., Jain, S., & Rani, V. (2011). Nanotechnology: emerging tool for diagnostics and therapeutics. Applied Biochemistry and Biotechnology, 165(5-6), 1178–1187.

    Article  CAS  PubMed  Google Scholar 

  22. Xun, E., Lv, X., Kang, W., Wang, J., Zhang, H., Wang, L., & Wang, Z. (2012). Immobilization of Pseudomonas fluorescens lipase onto magnetic nanoparticles for resolution of 2-octanol. Applied Biochemistry and Biotechnology, 168(3), 697–707.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Y.-H., Chi, M.-C., Wang, T.-F., Chen, J.-C., & Lin, L.-L. (2012). Preparation of magnetic nanoparticles and their use for immobilization of C-terminally lysine-tagged Bacillus sp. TS-23 α-amylase. Applied Biochemistry and Biotechnology, 166(7), 1711–1722.

    Article  CAS  PubMed  Google Scholar 

  24. Kaya, N., Uygun, D. A., Akgöl, S., & Denizli, A. (2013). Purification of alcohol dehydrogenase from Saccharomyces cerevisiae using magnetic dye-ligand affinity nanostructures. Applied Biochemistry and Biotechnology, 169(7), 2153–2164.

    Article  CAS  PubMed  Google Scholar 

  25. Denizli, A., Kocakulak, M., & Pişkin, E. (1998). Bilirubin removal from human plasma in a packed-bed column system with dye-affinity microbeads. Journal of Chromatography B, 707(1-2), 25–31.

    Article  CAS  Google Scholar 

  26. Tait, J. F., Engelhardt, S., Smith, C., & Fujikawa, K. (1995). Prourokinase-annexin V chimeras Construction, expression, and characterization of recombinant proteins. The Journal of Biological Chemistry, 270(37), 21594–21599.

    Article  CAS  PubMed  Google Scholar 

  27. Doğan, A., Özkara, S., Sarı, M. M., Uzun, L., & Denizli, A. (2012). Evaluation of human interferon adsorption performance of Cibacron Blue F3GA attached cryogels and interferon purification by using FPLC system. Journal of Chromatography B, 893–894, 69–76.

    Article  Google Scholar 

  28. Painter, R. H., & Charles, A. F. (1962). Characterization of a soluble plasminogen activator from kidney cell cultures. The American Journal of Physiology, 202, 1125–1130.

    Article  CAS  PubMed  Google Scholar 

  29. Haynes, C. A., & Norde, W. (1994). Globular proteins at solid/liquid interfaces. Colloids and Surfaces B: Biointerfaces, 2(6), 517–566.

    Article  CAS  Google Scholar 

  30. Van der Veen, M., Norde, W., & Cohen Stuart, M. (2004). Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme. Colloids Surf B Biointerfaces, 35(1), 33–40.

    Article  CAS  PubMed  Google Scholar 

  31. Mu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., & Yan, B. (2014). Chemical basis of interactions between engineered nanoparticles and biological systems. Chemical Reviews, 114(15), 7740–7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tekiner, P., Perçin, I., Ergün, B., Yavuz, H., & Aksöz, E. (2012). Purification of urease from jack bean (Canavalia ensiformis) with copper (II) chelated poly (hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) cryogels. Journal of Molecular Recognition, 25(11), 549–554.

    Article  CAS  PubMed  Google Scholar 

  33. Çimen, D., & Denizli, A. (2012). Immobilized metal affinity monolithic cryogels for cytochrome c purification. Colloids and Surfaces. B, Biointerfaces, 93, 29–35.

    Article  CAS  PubMed  Google Scholar 

  34. Demirci, B., Bereli, N., Aslıyüce, S., Baydemir, G., & Denizli, A. (2017). Protein C recognition by ion-coordinated imprinted monolithic cryogels. Journal of Separation Science, 40(7), 1610–1620.

    Article  CAS  PubMed  Google Scholar 

  35. Bansal, V., Roychoudhury, P. K., Mattiasson, B., & Kumar, A. (2006). Recovery of urokinase from integrated mammalian cell culture cryogel bioreactor and purification of the enzyme using p-aminobenzamidine affinity chromatography. Journal of Molecular Recognition, 19(4), 332–339.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research has been supported by the Adnan Menderes University Research Fund under project number FEF-17002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Aktaş Uygun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evli, S., Uygun, D.A. Enzymatic Activity of Urokinase Immobilized onto Cu2+-Chelated Cibacron Blue F3GA–Derived Poly (HEMA) Magnetic Nanoparticles. Appl Biochem Biotechnol 188, 194–207 (2019). https://doi.org/10.1007/s12010-018-2923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2923-z

Keywords

Navigation