Skip to main content

Advertisement

Log in

Inhibitors Compounds on Sugarcane Bagasse Saccharification: Effects of Pretreatment Methods and Alternatives to Decrease Inhibition

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Considering bioethanol production, extensive research has been performed to decrease inhibitors produced during pretreatments, to diminish energy input, and to decrease costs. In this study, sugarcane bagasse was pretreated with NaOH, H2SO4, and water. The higher concentration of phenols, 3.3 g/L, was observed in biomass liquid fraction after alkaline pretreatment. Acid pretreatment was responsible to release considerable acetic acid concentration, 2.3 g/L, while water-based pretreatment was the only to release formic acid, 0.02 g/L. Furans derivatives were not detected in liquid fractions regardless of pretreatment. Furthermore, washing step removed most of the phenols from pretreated sugarcane bagasse. Saccharification of alkali-pretreated biomass plus polyethylene glycol (PEG) at 0.4% (w/v) enhanced 8 and 26% the glucose and the xylose release, respectively, while polyvinylpyrrolidone (PVP) also at 0.4% (w/v) increased the release by 10 and 31% of these sugars, respectively, even without washing and filtration steps. Moreover, these polymers cause above 50% activation of endoglucanase and xylanase activities which are crucial for biomass hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58.

    Article  CAS  PubMed  Google Scholar 

  2. McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 37–46.

    Article  CAS  PubMed  Google Scholar 

  3. Haghighi, S., Hossein, A., & Tabatabaei, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable & Sustainable Energy Reviews, 27, 77–93.

    Article  CAS  Google Scholar 

  4. Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112.

    Article  CAS  PubMed  Google Scholar 

  5. Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable & Sustainable Energy Reviews, 27, 77–93.

    Article  CAS  Google Scholar 

  6. Florencio, C., Badino, A. C., & Farinas, C. S. (2016). Soybean protein as a cost-effective lignin- blocking additive for the saccharification of sugarcane bagasse. Bioresource Technology, 221, 172–180.

    Article  CAS  PubMed  Google Scholar 

  7. Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2010). Inhibition of cellulases by phenols. Enzyme Microbial Technology, 46(3-4), 170–176.

    Article  CAS  Google Scholar 

  8. Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microbial Technology, 48(4-5), 408–415.

    Article  CAS  PubMed  Google Scholar 

  9. Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2011). Deactivation of cellulases by phenols. Enzyme Microbial Technology, 48(1), 54–60.

    Article  CAS  PubMed  Google Scholar 

  10. Ladeira-Ázar, R. I. S., Morgan, T., dos Santos, A. C. F., Ximenes, E. A., Ladisch, M., & Guimarães, V. M. (2018). Deactivation and activation of lignocellulose degrading enzymes in the presence of laccase. Enzyme Microbial Technology, 109, 25–30.

    Article  CAS  PubMed  Google Scholar 

  11. Borjesson, J., Peterson, R., & Tjernel, F. (2007). Enhanced enzymatic conversion of soft-wood lignocellulose by poly (ethylene glycol) addition. Enzyme Microbial Technology, 40(4), 754–762.

    Article  CAS  Google Scholar 

  12. Kristensen, J. B., Borjesson, J., Bruun, M., Tjerneld, F., & Jorgensen, H. (2007). Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microbial Technology, 40(4), 888–895.

    Article  CAS  Google Scholar 

  13. Sipos, B., Szilágyi, M., Sebestyén, Z., Perazzini, R., Dienes, D., Jakab, E., Crestini, C., & Réczey, K. (2011). Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. Comptes Rendus Biologies, 334(11), 812–823.

    Article  CAS  PubMed  Google Scholar 

  14. Tejirian, A., & Xu, F. (2011). Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microbial Technology, 48(3), 239–247.

    Article  CAS  PubMed  Google Scholar 

  15. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  17. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Laboratory analytical procedure (LAP): determination of structural carbohydrates and lignin in biomass. Technical report: NREL/TP-510-42618. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  18. Budini, R., Tonelli, D., & Girotti, S. (1980). Analysis of total phenols using the Prussian blue method. Journal of Agricultural and Food Chemistry, 28(6), 1236–1238.

    Article  CAS  Google Scholar 

  19. Nakagame, S., Chandra, R. P., Kadla, J. F., & Saddler, J. N. (2011). The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresource Technology, 102(6), 4507–4517.

    Article  CAS  PubMed  Google Scholar 

  20. Carvalheiro, F., Duarte, L. C., & Girio, F. M. (2008). Hemicellulose biorefineries: a review on biomass pretreatments. Journal of Scientific and Industrial Research, 67, 849–864.

    CAS  Google Scholar 

  21. Maitan-Alfenas, G. P., Visser, E. M., Alfenas, R. F., Nogueira, B. R. G., de Campos, G. G., Milagres, A. F., de Vries, R. P., & Guimaraes, V. M. (2015). The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: a comparative study. Bioresource Technology, 192, 670–676.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J. M., Shi, J., Venditti, R. A., & Jameel, H. (2009). Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis. Bioresource Technology, 100(24), 6434–6441.

    Article  CAS  PubMed  Google Scholar 

  23. Pu, Y., Treasure, T., Gonzalez, R., Venditti, R., & Jameel, H. (2011). Autohydrolysis pretreatment of mixed hardwoods to extract value prior to combustion. Bioresources, 6, 4856–4870.

    CAS  Google Scholar 

  24. Falkoski, D. L., Guimaraes, V. M., de Almeida, M. N., Alfenas, A. C., Colodette, J. L., & de Rezende, S. T. (2013). Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresource Technology, 130, 296–305.

    Article  CAS  PubMed  Google Scholar 

  25. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  26. Harrison, M. D., Zhang, Z., Shand, K., Hara, I. M. O., Doherty, W. O. S., & Dale, J. L. (2013). Effect of pretreatment on saccharification of sugar cane bagasse by complex and simple enzyme mixtures. Bioresource Technology, 148, 105–113.

    Article  CAS  PubMed  Google Scholar 

  27. Hu, F., & Ragauskas, A. (2012). Pretreatment and lignocellulosic chemistry. Bioenergy Research, 5(4), 1043–1066.

    Article  CAS  Google Scholar 

  28. Kim, Y., Kreke, T., Ko, J. K., & Ladisch, M. R. (2015). Hydrolysis-determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnology and Bioengineering, 112(4), 677–687.

    Article  CAS  PubMed  Google Scholar 

  29. Kim, Y., Kreke, T., Mosier, N. S., & Ladisch, M. R. (2014). Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnology and Bioengineering, 111(2), 254–263.

    Article  CAS  PubMed  Google Scholar 

  30. Jönsson, L. J., Alriksson, B., & Nilvebrant, N. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6(1), 16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mhlongo, S. I., Riaan, H., Viljoen-Blooma, M., & van Zyl, W. H. (2015). Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance. Enzyme Microbial Technology, 81, 16–22.

    Article  CAS  PubMed  Google Scholar 

  32. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., & Zacchi, G. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microbial Technology, 24(3-4), 151–159.

    Article  CAS  Google Scholar 

  33. Du, B., Sharma, L. N., Becker, C., Chen, S.-F., Mowery, R. A., van Walsum, G. P., & Chambliss, C. K. (2010). Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnology and Bioengineering, 107(3), 430–440.

    Article  CAS  PubMed  Google Scholar 

  34. Kim, Y., Kreke, T., Hendrickson, R., Parenti, J., & Ladisch, M. R. (2013). Fractionation of cellulase and fermentation inhibitors from steam pretreated mixed hardwood. Bioresource Technology, 135, 30–38.

    Article  CAS  PubMed  Google Scholar 

  35. Ko, J. K., Ximenes, E., Kim, Y., & Ladisch, M. R. (2015a). Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnology and Bioengineering, 112(3), 447–456.

    Article  CAS  PubMed  Google Scholar 

  36. Guo, F., Shi, W., Sun, W., Li, X., Wang, F., Zhao, J., & Qu, Y. (2014). Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnology for Biofuels, 7, 1–10.

    Article  CAS  Google Scholar 

  37. Ko, J. K., Kim, Y., Ximenes, E., & Ladisch, M. R. (2015b). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2), 252–262.

    Article  CAS  PubMed  Google Scholar 

  38. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2008). Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technology, 99(18), 8940–8948.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, J., & Chen, H. (2014). Stimulation of cellulases by small phenolic compounds in pretreated stover. Journal of Agricultural and Food Chemistry, 62(14), 3223–3229.

    Article  CAS  PubMed  Google Scholar 

  40. Moreno, A., Ibarra, D., Fernández, J. L., & Ballesteros, M. (2012). Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresource Technology, 106, 101–109.

    Article  CAS  PubMed  Google Scholar 

  41. Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. Advances in Biochemical Engineering Biotechnology., 108, 41–65.

    CAS  Google Scholar 

  42. Bensah, E., & Mensah, M. (2013). Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. International Journal of Chemical Engineering, 1–21.

  43. González-Bautista, E., Santana-Morales, J. C., Ríos-Fránquez, F. X., Poggi-Varaldo, H. M., Ramos-Valdivia, A. C., Cristiani-Urbina, E., & Ponce-Noyola, T. (2017). Phenolic compounds inhibit cellulase and xylanase activities of Cellulomonas flavigena PR-22 during saccharification of sugarcane bagasse. Fuel, 196, 32–35.

    Article  CAS  Google Scholar 

  44. Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology, 157, 68–76.

    Article  CAS  PubMed  Google Scholar 

  45. Min, D., Xu, R., Hou, Z., Lv, J., Huang, C., Jin, Y., & Yong, Q. (2015). Minimizing inhibitors during pretreatment while maximizing sugar production in enzymatic hydrolysis through a two-stage hydrothermal pretreatment. Cellulose, 22(2), 1253–1261.

    Article  CAS  Google Scholar 

  46. García-Aparicio, M. P., Ballesteros, I., González, A., Oliva, J. M., Ballesteros, M., & Negro, M. J. (2006). Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 129(1-3), 278–288.

    Article  PubMed  Google Scholar 

  47. Cai, C., Qiu, X., Zheng, M., Lin, M., Lin, X., Lou, H., Zhan, X., Pang, Y., Huang, J., & Xie, L. (2017). Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin. Bioresource Technology, 227, 74–81.

    Article  CAS  PubMed  Google Scholar 

  48. Quay, D. H. X., Bakar, F. D. A., Rabu, A., Said, M., Illias, R. M., Mahadi, N. M., Hassan, O., & Murad, A. M. A. (2011). Overexpression, purification and characterization of the Aspergillus niger endoglucanase, EglA, in Pichia pastoris. African Journal of Biotechnology, 10, 2101–2111.

    CAS  Google Scholar 

  49. Eriksson, T., Borjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microbial Technology, 31(3), 353–364.

    Article  CAS  Google Scholar 

  50. Lin, H., Hu, B., & Zhu, M. (2016). Enhanced hydrogen production and sugar accumulation from spent mushroom compost by Clostridium thermocellum supplemented with PEG8000 and JFC-E. International Journal of Hydrogen Energy, 41(4), 2383–2390.

    Article  CAS  Google Scholar 

  51. Cheng, J., Yu, Y., & Zhu, M. (2014). Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition. Green Chemistry, 16(5), 2689–2695.

    Article  CAS  Google Scholar 

  52. Ouyang, J., Dong, Z., Song, X., Lee, X., Chen, M., & Yong, Q. (2010). Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresource Technology, 101(17), 6685–6691.

    Article  CAS  PubMed  Google Scholar 

  53. Kaar, W. E., & Holtzapple, M. T. (1998). Benefits from Tween during enzymatic hydrolysis of corn stover. Biotechnology and Bioengineering, 59(4), 419–427.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CNPq for the scholarship granted to the first author. This research was also supported by the Brazilian institutions FAPEMIG and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Piccolo Maitan-Alfenas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladeira-Ázar, R.I.S., Morgan, T., Maitan-Alfenas, G.P. et al. Inhibitors Compounds on Sugarcane Bagasse Saccharification: Effects of Pretreatment Methods and Alternatives to Decrease Inhibition. Appl Biochem Biotechnol 188, 29–42 (2019). https://doi.org/10.1007/s12010-018-2900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2900-6

Keywords

Navigation