Skip to main content
Log in

Solid-State Treatment of Castor Cake Employing the Enzymatic Cocktail Produced from Pleurotus djamor Fungi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the enzymatic cocktail produced by Pleurotus djamor fungi extracted at pH of 4.8 and 5.3 was employed for castor cake solid-state treatment. Proximal, X-ray powder diffraction and scanning electron microscopy analysis of the pristine castor cake were carried out. First, Pleurotus djamor stain was inoculated in castor cake for the enzymatic production and the enzymatic activity was determined. The maximum enzymatic activity was identified at days 14 (65.9 UI/gss) and 11 (140.3 UI/gss) for the enzymatic cocktail obtained at pH 5.3 and 4.8, respectively. Then, the enzymatic cocktail obtained at the highest enzymatic activity days was employed directly over castor cake. Lignin was degraded throughout incubation time achieving a 47 and 45% decrease for the cocktail produced at pH 4.8 and 5.3, correspondingly. These results were corroborated by the SEM and XRD analysis where a higher porosity and xylan degradation were perceived throughout the enzymatic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conversion and Management, 52(2), 858–875. https://doi.org/10.1016/j.enconman.2010.08.013.

    Article  CAS  Google Scholar 

  2. Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. https://doi.org/10.1016/j.pecs.2012.03.002.

    Article  CAS  Google Scholar 

  3. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37(1), 19–27. https://doi.org/10.1016/j.renene.2011.06.045.

    Article  CAS  Google Scholar 

  4. Mosier, N., Wyman, C. E., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025.

    Article  CAS  Google Scholar 

  5. Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35–53. https://doi.org/10.1016/j.pecs.2014.01.001.

    Article  Google Scholar 

  6. Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080.

    Article  CAS  Google Scholar 

  7. Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001.

    Article  Google Scholar 

  8. Patel, S. J., Onkarappa, R., & Shobha, K. S. (2007). Comparative study of ethanol production from microbial pretreated agricultural residues. Journal of Applied Sciences and Environmental Management, 11, 137–141.

    Google Scholar 

  9. de Menezes, C. R., Silva, I. S., Pavarina, E. C., Dias, E. F. G., Dias, F. G., Grossman, M. J., & Durrant, L. R. (2009). Production of xylooligosaccharides from enzymatic hydrolysis of xylan by the white-rot fungi Pleurotus. International Biodeterioration & Biodegradation, 63(6), 673–678. https://doi.org/10.1016/j.ibiod.2009.02.008.

    Article  Google Scholar 

  10. Marnyye, A., Velásquez, C., Mata, G., & Michel, S. J. (2002). Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World Journal of Microbiology and Biotechnology, 18, 201–207.

    Article  Google Scholar 

  11. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100(6), 637–643. https://doi.org/10.1263/jbb.100.637.

    Article  CAS  Google Scholar 

  12. Yu, J., Zhang, J., He, J., Liu, Z., & Yu, Z. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 100(2), 903–908. https://doi.org/10.1016/j.biortech.2008.07.025.

    Article  CAS  Google Scholar 

  13. Ogunniyi, D. S. (2006). Castor oil: a vital industrial raw material. Bioresource Technology, 97(9), 1086–1091. https://doi.org/10.1016/j.biortech.2005.03.028.

    Article  CAS  Google Scholar 

  14. Ortiz-Moreno, L. (2014). Pretratamiento de los residuos lignocelulósicos provenientes de la extracción de aceite de ricino para la extracción de enzimas celulasas y xilanasas. Master’s Thesis, (pp. 52–53). México: Benemérita Universidad Autónoma de Puebla.

  15. Official Methods of Analysis of AOAC International. (2006). 25th ed. Association of Official Analytical Chemists: Arlington.

    Google Scholar 

  16. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.

    Article  Google Scholar 

  17. Terinte, N., Ibbett, R., & Schuster, K. C. (2011). Overview on native cellulose and microcrystalline cellulose I structure studied by x-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Berichte, 89, 118–131.

    CAS  Google Scholar 

  18. Mikiashvili, N., Wasser, S. P., Nevo, E., & Elisashvili, V. (2006). Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity. World Journal of Microbiology and Biotechnology, 22(9), 999–1002. https://doi.org/10.1007/s11274-006-9132-6.

    Article  CAS  Google Scholar 

  19. Cianchetta, S., Galletti, S., Burzi, P. L., & Cerato, C. (2010). A novel microplate-based screening strategy to assess the cellulolytic potential of Trichoderma strains. Biotechnology and Bioengineering, 107(3), 461–468. https://doi.org/10.1002/bit.22816.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  21. Desai, D. I., & Iyer, B. D. (2016). Biodeinking of old newspaper pulp using a cellulase-free xylanase preparation of Aspergillus niger DX-23. Biocatalysis and Agricultural Biotechnology, 5, 78–85. https://doi.org/10.1016/j.bcab.2015.11.001.

    Article  Google Scholar 

  22. Bonatti, M., Karnopp, A. P., Soares, H. M., & Furlan, S. A. (2004). Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chemistry, 88(3), 425–428. https://doi.org/10.1016/j.foodchem.2004.01.050.

    Article  CAS  Google Scholar 

  23. Herculano, P. N., Lima, D. M. M., Fernandes, M. J. S., Neves, R. P., Souza-Motta, C. M., & Porto, A. L. (2011). Isolation of cellulolytic fungi from waste of castor (Ricinus Communis L.) Current Microbiology, 62(5), 1416–1422. https://doi.org/10.1007/s00284-011-9879-3.

    Article  CAS  Google Scholar 

  24. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7.

    Article  CAS  Google Scholar 

  25. Lacerda, R. S., Makishi, G. L. A., Chambib, H. N. M., Bittante, Q. B., Gomide, C. A., Costa, P. A., & Sobral, P. J. A. (2014). Castor bean (Ricinus communis) cake protein extraction by alkaline solubilization: definition of process parameters. Chemical Engineering Transactions, 37, 775–780.

    Google Scholar 

  26. Martin, C., Moure, A., Martin, G., Carrillo, E., Dominguez, H., & Parajó, J. (2010). Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass & Bioenergy, 34(4), 533–538. https://doi.org/10.1016/j.biombioe.2009.12.019.

    Article  CAS  Google Scholar 

  27. Annongu, A. A., & Joseph, J. K. (2008). Proximate analysis of castor seeds and cake. Journal of Applied Sciences and Environmental Management, 12, 39–41.

    Google Scholar 

  28. Manthey, F. A., Hareland, G. A., & Huseby, D. J. (1999). Soluble and insoluble dietary fiber content and composition of oat. Cereal Chemistry, 76(3), 417–420. https://doi.org/10.1094/CCHEM.1999.76.3.417.

    Article  CAS  Google Scholar 

  29. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology Advances, 29(6), 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005.

    Article  CAS  Google Scholar 

  30. Chen, W., Zhong, L., Peng, X., Wang, K., Chen, Z., & Sun, R. (2014). Xylan-type hemicellulose supported palladium nanoparticles: a highly efficient and reusable catalyst for the carbon-carbon coupling reactions. Catalysis Science & Technology, 4(5), 1426–1435. https://doi.org/10.1039/C3CY00933E.

    Article  CAS  Google Scholar 

  31. Suárez-García, F., Martínez-Alonzo, A., Fernández Llorente, M., & Tascón, J. M. D. (2002). Inorganic matter characterization in vegetable biomass feedstocks. Fuel, 81(9), 1161–1169. https://doi.org/10.1016/S0016-2361(02)00026-1.

    Article  Google Scholar 

  32. Clixoo, (2010). Comprehensive castor oil report: A report on castor oil & castor oil derivatives. Tamilnadu, India. Available from http://www.castoroil.in.

  33. Cheng, G., Varanasi, P., Li, C., Liu, H., Melnichenko, Y. B., Simmons, B. A., Kent, M. S., & Singh, S. (2011). Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules, 12(4), 933–941. https://doi.org/10.1021/bm101240z.

    Article  CAS  Google Scholar 

  34. Perea-Flores, M. J., Chanona-Pérez, J. J., Garibay-Febles, V., Calderón-Dominguez, G., Terrés-Rojas, E., Mendoza-Pérez, J. A., & Herrera-Bucio, R. (2011). Microscopy techniques and image analysis for evaluation of some chemical and physical properties and morphological features for seeds of the castor oil plant (Ricinus communis). Industrial Crops and Products, 34(1), 1057–1065. https://doi.org/10.1016/j.indcrop.2011.03.015.

    Article  CAS  Google Scholar 

  35. Herculano, P. N., Porto, T. S., Moreira, K. A., Pinto, G. A., Souza-Motta, C. M., & Porto, A. L. F. (2011). Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid-state fermentation. Applied Biochemistry and Biotechnology, 165(3-4), 1057–1067. https://doi.org/10.1007/s12010-011-9321-0.

    Article  CAS  Google Scholar 

  36. Howard, R. L., Abotsi, E., Jansen van Ressburg, E. L., & Howard, S. (2013). Lignocellulose biotechology: issues of biocenversion and enzyme production. African Journal of Biotechnology, 2, 602–619.

    Article  Google Scholar 

  37. Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30(6), 1447–1457. https://doi.org/10.1016/j.biotechadv.2012.03.003.

    Article  CAS  Google Scholar 

  38. Elisashvili, V., Penninckx, M., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Kharziani, T., & Kvesitadze, G. (2008). Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresource Technology, 99(3), 457–462. https://doi.org/10.1016/j.biortech.2007.01.011.

    Article  CAS  Google Scholar 

  39. Xu, F., Shi, Y.-C., & Wang, D. (2013). X-ray scattering studies of lignocellulosic biomass: a review. Carbohydrate Polymers, 94(2), 904–917. https://doi.org/10.1016/j.carbpol.2013.02.008.

    Article  CAS  Google Scholar 

  40. Sánchez-Cantú, M., Pérez-Díaz, L. M., Tepale-Ochoa, N., González-Coronel, V. J., Ramos-Cassellis, M. E., Machorro-Aguirre, D., & Valente, J. S. (2013). Green synthesis of hydrocalumite-type compounds and their evaluation in the transesterification of castor bean oil and methanol. Fuel, 110, 23–31. https://doi.org/10.1016/j.fuel.2012.06.078.

    Article  Google Scholar 

  41. Iglesias, I., García-Romero, E., & Acosta, A. (2014). Influence of dolomite microcrystals on the technological properties of Santa Cruz de Mudela clays used for building ceramics. Applied Clay Science, 102, 261–267. https://doi.org/10.1016/j.clay.2014.10.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank BUAP-CUVyTT for the help given in catalysts’ characterization; L. Ortíz-Moreno thanks Conacyt for the scholarship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Sánchez-Cantú.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Cantú, M., Ortiz-Moreno, L., Ramos-Cassellis, M.E. et al. Solid-State Treatment of Castor Cake Employing the Enzymatic Cocktail Produced from Pleurotus djamor Fungi. Appl Biochem Biotechnol 185, 434–449 (2018). https://doi.org/10.1007/s12010-017-2656-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2656-4

Keywords

Navigation