Skip to main content
Log in

Optimal Production of a Rhodococcus erythropolis ATCC 4277 Biocatalyst for Biodesulfurization and Biodenitrogenation Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rhodococcus sp. has a broad catabolic diversity and unique enzymatic capabilities, and it is able to adapt under extreme conditions. Thereby, the production of this remarkable bacterium has a great biotechnological and industrial importance. In this sense, we sought to improve the R. erythropolis ATCC 4277 growth through a central composite design, by varying the components of nutrient medium (glucose, malt extract, yeast extract, CaCO3), temperature, and agitation. It was found that the concentrations of glucose and malt extract are not statistically significant, being reduced of 4.0 and 10.0 g L-1 to 2.0 and 5.0 g L−1, respectively. The CaCO3 concentration and temperature were also diminished of 2.0 to 1.16 g L−1and 28 to 23.7 °C, respectively. Optimal growth conditions provided a 240% increase in final biomass concentration, an increment in specific growth rate, and a growth yield coefficient about five times greater. Application of the optimal conditions in biodesulfurization and biodenitrogenation processes showed that desulfurization capability is not associated with optimal growth conditions; however, it was achieved a 47% of nitrogen removal in the assay containing 10% (w/w) of heavy gas oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\( {C}_m^{\exp } \) :

Experimental concentration at the point m (g L−1)

\( {C}_m^{\mathrm{num}} \) :

Numerical concentration at the point m (g L−1)

C i :

Initial concentration of S or N (mg g−1)

C f :

Final concentration of S or N (mg g−1)

F obj :

Objective function (g L−1)

K s :

Saturation constant (g L−1)

m :

Sampling point

m HGO :

Mass of HGO

m removed :

Total mass of S or N removed

n :

Total number of observations

S :

Substrate concentration (g L−1)

S o :

Initial substrate concentration (g L−1)

t :

Time (h)

u max :

Maximum specific growth rate (h−1)

u X :

Specific growth rate (h−1)

Y X/S :

Growth yield coefficient

X :

Biomass concentration (g L−1)

X o :

Initial biomass concentration (g L−1)

References

  1. Stancu, M. M. (2014). Physiological cellular responses and adaptations of Rhodococcus erythropolis IBBPo1 to toxic organic solvents. Journal of Environmental Sciences, 26, 2065–2075.

    Article  Google Scholar 

  2. Langdahl, B. R., Bisp, P., & Ingvorsen, K. (1996). Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology, 142, 145–154.

    Article  CAS  Google Scholar 

  3. Heald, S. C., Brandão, P. F. B., Hardicre, R., & Bull, A. T. (2001). Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie Van Leeuwenhoek, 80, 169–183.

    Article  CAS  Google Scholar 

  4. Whyte, L. G., Slagman, S. J., Pietrantonio, F., Bourbonnière, L., Koval, S. F., Lawrence, J. R., Inniss, W. E., & Greer, C. W. (1999). Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Applied and Environmental Microbiology, 65, 2961–2968.

    CAS  Google Scholar 

  5. de Carvalho, C. C. C. R. (2012). Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Research in Microbiology, 163, 125–136.

    Article  Google Scholar 

  6. Heipieper, H. J., Neumann, G., Cornelissen, S., & Meinhardt, F. (2007). Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Applied Microbiology and Biotechnology, 74, 961–973.

    Article  CAS  Google Scholar 

  7. Carvalho, C. C. C. R., Parreño-Marchante, B., Neumann, G., Fonseca, M. M. R., & Heipieper, H. J. (2004). Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Applied Microbiology and Biotechnology, 67, 383–388.

    Article  Google Scholar 

  8. Carvalho, C. C. C. R., Fatal, V., Alves, S. S., & Fonseca, M. M. R. (2007). Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Applied Microbiology and Biotechnology, 76, 1423–1430.

    Article  CAS  Google Scholar 

  9. Cortes, M. A. L. R. M., & de Carvalho, C. C. C. R. (2015). Effect of carbon sources on lipid accumulation in Rhodococcus cells. Biochemical Engineering Journal, 94, 100–105.

    Article  CAS  Google Scholar 

  10. van der Geize, R., & Dijkhuizen, L. (2004). Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Current Opinion in Microbiology, 7, 255–261.

    Article  Google Scholar 

  11. Bicca, F. C., Fleck, L. C., & Ayub, M. A. Z. (1999). Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Revista de Microbiologia, 30, 231–236.

    Article  CAS  Google Scholar 

  12. Gupta, A. K., Ibrahim, S., & Al Shoaibi, A. (2016). Advances in sulfur chemistry for treatment of acid gases. Progress in Energy and Combustion Science, 54, 65–92.

    Article  Google Scholar 

  13. Dinamarca, M. A., Rojas, A., Baeza, P., Espinoza, G., Ibacache-Quiroga, C., & Ojeda, J. (2014). Optimizing the biodesulfurization of gas oil by adding surfactants to immobilized cell systems. Fuel, 116, 237–241.

    Article  CAS  Google Scholar 

  14. Gupta, N., Roychoudhury, P. K., & Deb, J. K. (2004). Biotechnology of desulfurization of diesel: prospects and challenges. Applied Microbiology and Biotechnology, 66, 356–366.

    Article  Google Scholar 

  15. von Mühlen, C., de Oliveira, E. C., Morrison, P. D., Zini, C. A., Caramão, E. B., & Marriott, P. J. (2007). Qualitative and quantitative study of nitrogen-containing compounds in heavy gas oil using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection. Journal of Separation Science, 30, 3223–3232.

    Article  Google Scholar 

  16. Kilbane Ii, J. J. & Le Borgne, S. (2004). in Studies in surface science and catalysis, vol. Volume 151, (Rafael, V.-D. and Rodolfo, Q.-R., eds.), Elsevier, pp. 29–65.

  17. Yu, B., Xu, P., Zhu, S., Cai, X., Wang, Y., Li, L., Li, F., Liu, X., & Ma, C. (2006). Selective biodegradation of S and N heterocycles by a recombinant Rhodococcus erythropolis strain containing carbazole dioxygenase. Applied and Environmental Microbiology, 72, 2235–2238.

    Article  CAS  Google Scholar 

  18. Derikvand, P., Etemadifar, Z., & Biria, D. (2014). Taguchi optimization of dibenzothiophene biodesulfurization by Rhodococcus erythropolis R1 immobilized cells in a biphasic system. International Biodeterioration & Biodegradation, 86(Part C), 343–348.

    Article  CAS  Google Scholar 

  19. Dinamarca, M. A., Ibacache-Quiroga, C., Baeza, P., Galvez, S., Villarroel, M., Olivero, P., & Ojeda, J. (2010). Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresource Technology, 101, 2375–2378.

    Article  CAS  Google Scholar 

  20. Li, F., Xu, P., Feng, J., Meng, L., Zheng, Y., Luo, L., & Ma, C. (2005). Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Applied and Environmental Microbiology, 71, 276–281.

    Article  CAS  Google Scholar 

  21. Li, G.-Q., Li, S.-S., Qu, S.-W., Liu, Q.-K., Ma, T., Zhu, L., Liang, F.-L., & Liu, R.-L. (2008). Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnology Letters, 30, 1759–1764.

    Article  CAS  Google Scholar 

  22. Li, Y. G., Xing, J. M., Xiong, X. C., Li, W. L., Gao, H. S., & Liu, H. Z. (2007). Improvement of biodesulfurization activity of alginate immobilized cells in biphasic systems. Journal of Industrial Microbiology & Biotechnology, 35, 145–150.

    Article  Google Scholar 

  23. Naito, M., Kawamoto, T., Fujino, K., Kobayashi, M., Maruhashi, K., & Tanaka, A. (2001). Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Applied Microbiology and Biotechnology, 55, 374–378.

    Article  CAS  Google Scholar 

  24. Bachmann, R. T., Johnson, A. C., & Edyvean, R. G. J. (2014). Biotechnology in the petroleum industry: an overview. International Biodeterioration & Biodegradation, 86(Part C), 225–237.

    Article  CAS  Google Scholar 

  25. Boniek, D., Figueiredo, D., Santos, A. F. B., & Resende Stoianoff, M. A. (2014). Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technologies and Environmental Policy, 17, 29–37.

    Article  Google Scholar 

  26. Huang, L., Ma, T., Li, D., Liang, F.-L., Liu, R.-L., & Li, G.-Q. (2008). Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis. Marine Pollution Bulletin, 56, 1714–1718.

    Article  CAS  Google Scholar 

  27. Olmo, C. H. D., Santos, V. E., Alcon, A., & Garcia-Ochoa, F. (2005). Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochemical Engineering Journal, 22, 229–237.

    Article  Google Scholar 

  28. del Olmo, C. H., Alcon, A., Santos, V. E., & Garcia-Ochoa, F. (2005). Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of media composition. Enzyme and Microbial Technology, 37, 157–166.

    Article  Google Scholar 

  29. Vaidya, B. K., Mutalik, S. R., Joshi, R. M., Nene, S. N., & Kulkarni, B. D. (2009). Enhanced production of amidase from Rhodococcus erythropolis MTCC 1526 by medium optimisation using a statistical experimental design. Journal of Industrial Microbiology & Biotechnology, 36, 671–678.

    Article  CAS  Google Scholar 

  30. Rodrigues, L., Teixeira, J., Oliveira, R., & van der Mei, H. C. (2006). Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochemistry, 41, 1–10.

    Article  CAS  Google Scholar 

  31. Porto, B., Maass, D., Oliveira, J. V., de Oliveira, D., Yamamoto, C. I., Ulson de Souza, A. A., & Ulson de Souza, S. M. A. G. (2017). Heavy gas oil biodesulfurization by Rhodococcus erythropolis ATCC 4277: optimized culture medium composition and evaluation of low-cost alternative media. Journal of Chemical Technology & Biotechnology. doi:10.1002/jctb.5244.

  32. Monticello, D. J. (2000). Biodesulfurization and the upgrading of petroleum distillates. Current Opinion in Biotechnology, 11, 540–546.

    Article  CAS  Google Scholar 

  33. Singh, G. B., Srivastava, A., Saigal, A., Aggarwal, S., Bisht, S., Gupta, S., Srivastava, S., & Gupta, N. (2011). Biodegradation of carbazole and dibenzothiophene by bacteria isolated from petroleum-contaminated sites. Bioremediation Journal, 15, 189–195.

    Article  CAS  Google Scholar 

  34. Prado, G. H., Rao, Y., & de Klerk, A. (2016). Nitrogen removal from oil: a review. Energy & Fuels, 31, 14–36.

    Article  Google Scholar 

  35. Maass, D., Todescato, D., Moritz, D. E., Oliveira, J. V., Oliveira, D., Ulson de Souza, A. A., & Guelli Souza, S. M. A. (2015). Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277. Bioprocess and Biosystems Engineering, 38, 1447–1453.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CAPES and CNPq for the financial support of this work and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora de Oliveira.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todescato, D., Maass, D., Mayer, D.A. et al. Optimal Production of a Rhodococcus erythropolis ATCC 4277 Biocatalyst for Biodesulfurization and Biodenitrogenation Applications. Appl Biochem Biotechnol 183, 1375–1389 (2017). https://doi.org/10.1007/s12010-017-2505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2505-5

Keywords

Navigation