Skip to main content
Log in

Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two kinds of exoglucanase were purified from a marine Aspergillus niger. Catalytic ability of halophilic exoglucanase with a lower molecular weight and secondary structure change was analyzed at different salinities. Activity of the low molecular weight exoglucanase in 10% NaCl solution (w/v) was 1.69-fold higher of that in NaCl-free solution. Half-life time in 10% NaCl solution (w/v) was over 1.27-fold longer of that in NaCl-free solution. Free energy change of the low molecular weight exoglucanase denaturation, △G, in 10% NaCl solution (w/v) was 0.54 kJ/mol more than that in NaCl-free solution. Melt point in 10% NaCl solution (w/v), 52.01 °C, was 4.21 °C higher than that in NaCl-free solution, 47.80 °C. K m value, 0.179 mg/ml in 10% NaCl solution (w/v) was less 0.044 mg/ml than that, 0.224 mg/ml, in NaCl-free solution. High salinity made content of α-helix increased. Secondary structure change caused by high salinities improved exoglucanase thermostability and catalysis activity. The halophilic exoglucanase from a marine A. niger was valuable for hydrolyzing cellulose at high salinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37, 19–27.

    Article  CAS  Google Scholar 

  2. Dua, S. K., Sua, X., Yang, W. H., Wang, Y. Q., Kuang, M., Ma, L., Fang, D., & Zhou, D. Y. (2016). Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydrate Polymers., 140, 279–286.

    Article  Google Scholar 

  3. Li, Y., Qi, B., Luo, J. Q., & Wan, Y. H. (2016). Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis. Bioresource Technology., 200, 272–278.

    Article  CAS  Google Scholar 

  4. Pang, Z. W., Lu, W., Zhang, H., Liang, Z. W., Liang, J. J., Du, L. W., Duan, C. J., & Feng, J. X. (2016). Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS. Bioresource. Technology., 212, 82–91.

    Article  CAS  Google Scholar 

  5. Duff, S. J. B., & Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology, 55, 1–33.

    Article  CAS  Google Scholar 

  6. Sun, W. C., Cheng, C. H., & Lee, W. C. (2008). Protein expression and enzymatic activity of cellulases produced by Trichoderma reesei rut C-30 on rice straw. Process Biochemistry, 43, 1083–1087.

    Article  CAS  Google Scholar 

  7. Warren, R. A. J. (1996). Microbial hydrolysis of polysaccharides. Annual Review of Microbiology, 50, 183–212.

    Article  CAS  Google Scholar 

  8. Howard, R. L., Abotsi, E., Jansen van Rensburg, E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2, 602–619.

    Article  CAS  Google Scholar 

  9. Li, Q., He, Y. C., Xian, M., Jun, G., Xu, X., Yang, J. M., & Li, L. Z. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium diethyl phosphate pretreatment. Bioresource Technology, 100, 3570–3575.

    Article  CAS  Google Scholar 

  10. Xu, F., Shi, Y. C., & Wang, D. (2012). Enhanced production of glucose and xylose with partial dissolution of corn stover in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Bioresource Technology, 114, 720–724.

    Article  CAS  Google Scholar 

  11. Turner, M. B., Spear, S. K., Huddleston, J. G., Holbrey, J. D., & Rogers, R. D. (2003). Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chemistry, 5, 443–444.

    Article  CAS  Google Scholar 

  12. Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O., & Person, V. N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139, 47–54.

    Article  CAS  Google Scholar 

  13. Gunny, A. N., Arbain, D., Gumba, R. E., Jong, B. C., & Jamal, P. (2014). Potential halophilic cellulases for in situ enzymatic saccharification of ionic liquids pretreated lignocelluloses. Bioresource Technology, 155, 177–181.

    Article  CAS  Google Scholar 

  14. Annamalai, N., Thavasi, R., Vijayalakshmi, S., & Balasubramanian, T. (2011). A novel thermostable and halostable carboxymethylcellulase from marine bacterium Bacillus licheniformis AU01. World Journal of Microbiology and Biotechnology, 27, 2111–2115.

    Article  CAS  Google Scholar 

  15. Johnson, K. G., Lanthier, P. H., & Gochnauer, M. B. (1986). Studies of two strains of Actinopolyspora halophila, an extremely halophilic actinomycete. Archives of Microbiology, 143, 370–378.

    Article  CAS  Google Scholar 

  16. Li, X., & Yu, H. Y. (2013). Characterization of a halostable endoglucanase with organic solvent-tolerant property from Haloarcula sp. G10. International Journal of Biological Macromolecules, 62, 101–106.

    Article  CAS  Google Scholar 

  17. Xue, D. S., Chen, H. Y., Ren, Y. R., & Yao, S. J. (2012). Enhancing the activity and thermostability of thermostable β-glucosidase from a marine Aspergillus niger. Process Biochemistry, 47, 606–611.

    Article  CAS  Google Scholar 

  18. Xue, D. S., Chen, H. Y., Lin, D. Q., Guan, Y. X., & Yao, S. J. (2012). Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology. Applied Biochemistry and Biotechnology, 167, 1963–1972.

    Article  CAS  Google Scholar 

  19. Hoefer Inc. (1994). Protein electrophoresis Applications Guide. San Francisco: Hoefer Scientific Instruments.

    Google Scholar 

  20. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  21. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociating constants. Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  22. Siddiqui, K. S., Saqib, A. A. N., Rashid, M. H., & Rajoka, M. I. (1997). Thermostabilization of carboxymethyl-cellulase from Aspergillus niger by carboxyl group modification. Biotechnology Letters, 19, 325–329.

    Article  CAS  Google Scholar 

  23. Karnchanatat, A., Petsom, A., Sangvanich, P., Piapukiew, J., Whalley, A. J. S., Reynolds, C. D., Gad, G. M., & Sihanonth, P. (2008). A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. Enzyme and Microbial Technol., 42, 404–413.

    Article  CAS  Google Scholar 

  24. Bok, J., Dienesh, A., & Yernool, D. (1998). Purification, characterization and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Applied and Environmental Microbiology, 64, 4774–4781.

    CAS  Google Scholar 

  25. Fabian, H., Naumann, D., Misselwitz, R., Ristau, O., Gerlach, D., & Welfle, H. (1992). Secondary structure of streptokinase in aqueous solution: a Fourier transform infrared spectroscopic study. Biochemistry, 31, 6532–6538.

    Article  CAS  Google Scholar 

  26. Moroz, O. V., Maranta, M., Shaghasi, T., Harris, P. V., Wilson, K. S., & Davies, G. J. (2015). The three-dimensional structure of the cellobiohydrolase Cel7A from Aspergillus fumigatus at 1.5 resolution. Acta, Crystallogr. Sect. F, 71, 114.

    Article  CAS  Google Scholar 

  27. Kim, D. W., Jeong, Y. K., Jang, Y. H., & Lee, J. K. (1994). Purification and characterization of endoglucanase and exoglucanase components from Trichoderma viride. Journal of Fermentation and Bioengineering., 7, 363–369.

    Article  Google Scholar 

  28. Singh, A., Agrawal, A. K., Abidi, A. B., & Darmwal, N. S. (1990). Properties of exoglucanase from Aspergillus niger. Journal of General & Applied Microbiology., 36, 245–254.

    Article  CAS  Google Scholar 

  29. Mahmood, R. T., Asad, M. J., Mehboob, N., Mushtaq, M., Gulfraz, M., Muhammad Asgher, M., Minhas, N. M., & Hadri, S. H. (2013). Production, purification, and characterization of exoglucanase by Aspergillus fumigatus. Applied Biochemistry and Biotechnology, 170, 895–908.

    Article  CAS  Google Scholar 

  30. Tuka, K., Zverlov, V. V., Bumazkin, B. K., Velikodvorskaya, G. A., & Strongin, A. Y. (1990). Cloning and expression of Clostridium thermocellum genes coding for thermostable exoglucanases (cellobiohydrolases) in Escherichia coli cells. Biochemical and Biophysical Research Communications., 169, 1055–1060.

    Article  CAS  Google Scholar 

  31. Xu, J. X., Xiong, P., & He, B. F. (2016). Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. Bioresource Technology, 200, 961–970.

    Article  CAS  Google Scholar 

  32. Danson, M. J., & Hough, D. W. (1997). The structural basis of protein halophilicity. Comparative Biochemistry and Physiology. Part A, Physiology, 117, 307–312.

    Article  Google Scholar 

  33. Begemann, M. B., Mormile, M. R., Paul, V. G., & Vidt, D. J. (2011). Potential enhancement of biofuel production through enzymatic biomass degradation activity and biodiesel production by halophilic microorganisms. In A. Ventosa, A. Oren, & Y. Ma (Eds.), Halophiles and hypersaline environments current research and future trends (p. 345). Berlin: Springer-Verlag (Chapter 18).

    Google Scholar 

  34. Yu, H. Y., & Li, X. (2015). Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass and Bioenergy., 81, 19–25.

    Article  CAS  Google Scholar 

  35. Teeri, T. T., & Koivula, A. (1995). Cellulose degradation by native and engineered fungal cellulases. Carbohydr. Eur., 12(28–33115), 391–397.

    Google Scholar 

  36. Marangoni, A. G. (2003, ISBN: 0-471-15985-9). Enzyme kinetics a modern approach (pp. 146–150). NJ: Wiley.

    Google Scholar 

  37. Damodaran, S. (2006). Protein: denaturation. In Y. H. Hi (Ed.), Handbook of food science, technology and engineering. F L: CRC Press.

    Google Scholar 

  38. Oren, A. (2003). Halophilic microorganisms and their environments. Publishers: Kluwer Academic.

    Google Scholar 

  39. Mesbah, N. M., & Wiegel, J. (2005). Halophilic thermophiles: a novel group of extremophiles. In T. Satyanarayana & B. N. Johri (Eds.), Microbial diversity: Current perspectives and Potential Applications (pp. 91–118). New Delhi: I.K. Publishing House.

    Google Scholar 

  40. Karan, R., Capes, M. D., & Dassarma, S. (2012). Function and biotechnology of extremophilic enzymes in low water activity. Aquatic Biosystems, 8, 4–15.

    Article  CAS  Google Scholar 

  41. Susi, H., & Michael, B. M. (1983). Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochemical and Biophysical Research Communications, 115(1), 391–397.

    Article  CAS  Google Scholar 

  42. Torii, H., & Tasumi, M. (1992). Three-dimensional doorway-state theory for analyses of absorption bands of many-oscillator systems. The Journal of Chemical Physics, 97, 86–91.

    Article  CAS  Google Scholar 

  43. Spassov, S., Beekes, M., & Naumann, D. (2006). Structural differences between TSEs strains investigated by FT-IR spectroscopy. Biochimica et Biophysica Acta, 1760, 1138–1149.

    Article  CAS  Google Scholar 

  44. Kim, S. J., Joo, J. E., Jeon, S. D., Hyeon, J. E., Kim, S. W., Umc, Y. S., & Han, S. O. (2016). Enhanced thermostability of mesophilic endoglucanase Z with a high catalytic activity at active temperatures. International Journal of Biological Macromolecules., 86, 269–276.

    Article  CAS  Google Scholar 

  45. Ortega, G., Diercks, T., & Millet, O. (2015). Halophilic protein adaptation results from synergistic residue-ion interactions in the folded and unfolded states. Chemistry & Biology, 22, 1597–1607.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (31271928) and the Natural Science Foundation of Hubei Provincial Department of Education (Design of ethanol tolerant endoglucanase and mechanism of ethanol tolerance). Long yuan Liang was co-first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Jing Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Ds., Liang, Ly., Lin, Dq. et al. Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities. Appl Biochem Biotechnol 183, 1111–1125 (2017). https://doi.org/10.1007/s12010-017-2487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2487-3

Keywords

Navigation