Skip to main content

Advertisement

Log in

New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, press mud, a sugar industry waste, was explored for biobutanol production to strengthen agricultural economy. The fermentative production of biobutanol was investigated via series of steps, viz. characterization, drying, acid hydrolysis, detoxification, and fermentation. Press mud contains an adequate amount of cellulose (22.3%) and hemicellulose (21.67%) on dry basis, and hence, it can be utilized for further acetone-butanol-ethanol (ABE) production. Drying experiments were conducted in the temperature range of 60–120 °C to circumvent microbial spoilage and enhance storability of press mud. Furthermore, acidic pretreatment variables, viz. sulfuric acid concentration, solid to liquid ratio, and time, were optimized using response surface methodology. The corresponding values were found to be 1.5% (v/v), 1:5 g/mL, and 15 min, respectively. In addition, detoxification studies were also conducted using activated charcoal, which removed almost 93–97% phenolics and around 98% furans, which are toxic to microorganisms during fermentation. Finally, the batch fermentation of detoxified press mud slurry (the sample dried at 100 °C and pretreated) using Clostridium acetobutylicum NRRL B-527 resulted in a higher butanol production of 4.43 g/L with a total ABE of 6.69 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bankar, S. B., Survase, S. A., Ojamo, H., & Granström, T. (2013). Biobutanol: the outlook of an academic and industrialist. RSC Advances, 3, 24734.

    Article  CAS  Google Scholar 

  2. Harish, B. S., Ramaiah, M. J., & Uppuluri, K. B. (2015). Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy. Renewable Sustainable Energy Reviews, 51, 533–547.

    Article  CAS  Google Scholar 

  3. Karimi, K., Tabatabaei, M., Horvath, I. S., & Kumar, R. (2015). Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Ressearch Journal, 8, 301–308.

    Article  Google Scholar 

  4. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2013). Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal. Bioprocess and Biosystems Engineering, 36, 109–116.

    Article  CAS  Google Scholar 

  5. Jiang, Y., Liu, J., Jiang, W., Yang, Y., & Yang, S. (2014). Current status and prospects of industrial bio-production of n-butanol in China. Biotechnology Advances, 33, 1493–1501.

    Article  Google Scholar 

  6. Micro Market Monitor (2015). Asia-Pacific n-butanol market by applications (butyl acrylate, butyl acetate, glycol ethers, and others) & geography-global trends & forecasts to 2019. http://www.micromarketmonitor.com/market/asia-pacific-n-butanol2714757726.html/ (accessed 04.09.16).

  7. Uyttebroek, M., Hecke, W. V., & Vanbroekhoven, K. (2015). Sustainability metrics of 1-butanol. Catalyst Today, 239, 7–10.

    Article  CAS  Google Scholar 

  8. Qureshi, N., & Blaschek, H. P. (2001). ABE production from corn: a recent economic evaluation. Journal Industrial Microbiology and Biotechnology, 27, 292–297.

    Article  CAS  Google Scholar 

  9. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2004). Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Applied Microbiology Biotechnology, 63, 653–658.

    Article  CAS  Google Scholar 

  10. Qureshi, N., Cotta, M. A., & Saha, B. C. (2014). Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors. Food Bioproducts and Process, 92, 298–308.

    Article  CAS  Google Scholar 

  11. Saha, B. C., Qureshi, N., Kennedy, G. J., & Cotta, M. A. (2016). Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration and Biodegradation, 109, 29–35.

    Article  CAS  Google Scholar 

  12. Qureshi, N., & Ezeji, T. C. (2008). Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioproducts and Biorefineries, 2, 319–330.

    Article  CAS  Google Scholar 

  13. Bankar, S. B., Jurgens, G., Survase, S. A., Ojamo, H., & Granström, T. (2014). Enhanced isopropanol-butanol-ethanol (IBE) production in immobilized column reactor using modified Clostridium acetobutylicum DSM792. Fuel, 136, 226–232.

    Article  CAS  Google Scholar 

  14. Klein-Marcuschamer, D., Oleskowicz-Popiele, P., Simmons, B. A., & Blanch, H. W. (2010). Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass and Bioenergy, 34, 1914–1921.

    Article  CAS  Google Scholar 

  15. Morone, A., & Pandey, R. A. (2014). Lignocellulosic biobutanol production: gridlocks and potential remedies. Renewable Sustainable Energy Reviews, 37, 21–35.

    Article  CAS  Google Scholar 

  16. Somerville, C., Youngs, H., Taylor, C., Davis, S. C., & Long, S. P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329, 790–792.

    Article  CAS  Google Scholar 

  17. Kuruti, K., Rao, A. G., Gandu, B., Kiran, G., Mohammad, S., Sailaja, S., & Swamy, Y. V. (2015). Generation of bioethanol and VFA through anaerobic acidogenic fermentation route with press mud obtained from sugar mill as a feedstock. Bioresource Technology, 192, 646–653.

    Article  CAS  Google Scholar 

  18. Indian Sugar Industry (2015). Indian sugar industry—bitter sweetener. http://www.careratings.com/ /SplAnalysis/IndianSugarIndustry/. Aaccessed 09 March 2016.

  19. Ochoa George, P. A., Cabello Eras, J. J., Sagastume Gutierrez, A., & Vandecasteele, L. H. C. (2010). Residue from sugarcane juice filtration (filter cake): energy use at the sugar factory. Waste and Biomass Valorization, 1, 407–413.

    Article  CAS  Google Scholar 

  20. Dotaniya, M. L., & Datta, S. C. (2014). Impact of bagasse and press mud on availability and fixation capacity of phosphorus in an inceptisol of North India. Sugar Technology, 16, 109–112.

    Article  CAS  Google Scholar 

  21. Partha, N., & Sivasubramanian, V. (2006). Recovery of chemicals from press mud—a sugar industry waste. Indian Chemical Engineering, 48, 160–163.

    CAS  Google Scholar 

  22. Gupta, N., Tripathi, S., & Balomajumder, C. (2011). Characterization of press mud: a sugar industry waste. Fuel, 90, 389–394.

    Article  Google Scholar 

  23. Dissa, A. O., Desmorieux, H., Bathiebo, J., & Koulidiati, J. (2008). Convective drying characteristics of Amelie mango (MangiferaIndica L. cv. ‘Amelie’) with correction for shrinkage. Journal of Food Engineerning, 88, 429–437.

    Article  Google Scholar 

  24. Sathish, S., & Vivekanandan, S. (2015). Experimental investigation on biogas production using industrial waste (press mud) to generate renewable energy. International journal of innovative research in science, engineering and technology, 4, 2319–8753.

    Google Scholar 

  25. Karimi, K., Shafiei, M., & Kumar, R. (2013). Progress in physical and chemical pretreatment of lignocellulosic biomass. In V. K. Gupta & M. G. Tuohy (Eds.), Biofuel Technologies (pp. 53–96). Berlin: Springer.

    Chapter  Google Scholar 

  26. Maiti, S., Gallastegui, G., Sarma, S. J., Brar, S. K., Bihan, Y. L., Drogui, P., Buelna, G., & Verma, M. (2016). A re-look at the biochemical strategies to enhance butanol production. Biomass and Bioenergy, 94, 187–200.

    Article  CAS  Google Scholar 

  27. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of ash in biomass. Technical Report, NREL/TP-510-42622.

  28. Kirk, T. K., & Obst, J. R. (1988). In W. A. Wood & S. T. Kellogg (Eds.), Methods in enzymology—biomass, part B, lignin, pectin, and chitin (pp. 87–101). San Diego: Academic Press, Inc..

    Chapter  Google Scholar 

  29. Updegraff, D. M. (1969). Semimicro determination of cellulose in biological materials. Analytical Biochemistry, 32, 420–424.

    Article  CAS  Google Scholar 

  30. Gao, X., Kumar, R., & Wyman, C. E. (2014). Fast hemicellulose quantification via a simple one-step acid hydrolysis. Biotechnology and Bioengineering, 111, 1088–1096.

    Article  CAS  Google Scholar 

  31. Jin, L., Li, Y., Lin, L., Zou, L., & Hu, H. (2015). Drying characteristic and kinetics of Huolinhe lignite in nitrogen and methane atmospheres. Fuel, 152, 80–87.

    Article  CAS  Google Scholar 

  32. Dinani, S. T., & Havet, M. (2015). The influence of voltage and air flow velocity of combined convective-electrohydrodynamic drying system on the kinetics and energy consumption of mushroom slices. Journal of Cleaner Productions, 95, 203–211.

    Article  Google Scholar 

  33. Bankar, S. B., Dhumal, V., Bhotmange, D., Bhagwat, S., & Singhal, R. S. (2014a). Empirical predictive modelling of poly-ε-lysine biosynthesis in resting cells of streptomyces noursei. Food Sciences and Biotechnology, 23, 201–207.

    Article  CAS  Google Scholar 

  34. Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S., Cotta, M. A., & Blaschek, H. P. (2008). Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology, 99, 5915–5922.

    Article  CAS  Google Scholar 

  35. Harde, S. M., Jadhav, S. B., Bankar, S. B., Ojamo, H., Granström, T., Singhal, R. S., & Survase, S. A. (2016). Acetone-butanol-ethanol (ABE) fermentation using the root hydrolysate after extraction of forskolin from Coleus forskohlii. Renewable Energy, 86, 594–601.

    Article  CAS  Google Scholar 

  36. Yamamoto, M., Iakovlev, M., Bankar, S. B., Tunc, M. S., & Van Heiningen, A. (2014). Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide-ethanol-water fractionation. Bioresource Technology, 167, 530–538.

    Article  CAS  Google Scholar 

  37. Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., & Ingram, L. O. (2000). Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnology Progess, 16, 637–641.

    Article  CAS  Google Scholar 

  38. Bankar, S. B., Survase, S. A., Singhal, R. S., & Granström, T. (2012). Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresource Technology, 106, 110–116.

    Article  CAS  Google Scholar 

  39. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  40. Bankar, S. B., Survase, S. A., Ojamo, H., & Granström, T. (2013). The two stage immobilized column reactor with an integrated solvent recovery module for enhanced ABE production. Bioresource Technology, 140, 269–276.

    Article  CAS  Google Scholar 

  41. Kumar, R., Verma, D., Singh, B. L., Kumar, U., & Shweta. (2010). Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresource Technology, 101, 6707–6711.

    Article  CAS  Google Scholar 

  42. Gornicki, K., & Kaleta. (2007). Drying curve modelling of blanched carrot cubes under natural convection condition. Journal of Food Engineering, 82, 160–170.

    Article  Google Scholar 

  43. Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79, 47–56.

    Article  Google Scholar 

  44. Gálvez, A. V., Miranda, M., Díaz, L. P., Lopez, L., Rodriguez, K., & Scala, K. D. (2010). Effective moisture diffusivity determination and mathematical modeling of the drying curves of the olive-waste cake. Bioresource Technology, 101, 7265–7270.

    Article  Google Scholar 

  45. Akdas, S., & Baslar, M. (2014). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Process Preservations, 39, 1098–1107.

    Article  Google Scholar 

  46. Kim, B. S., & Lee, Y. Y. (2002). Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute acid pretreatment. Bioresource Technology, 83, 165–171.

    Article  CAS  Google Scholar 

  47. Xiang, Q., Kim, J. S., & Lee, Y. Y. (2003). A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Applied Biochemistry and Biotechnology, 105–108, 337–352.

    Article  Google Scholar 

  48. Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. V. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass and Bioenergy, 81, 9–18.

    Article  CAS  Google Scholar 

  49. Amiri, H., & Karimi, K. (2015). Improvement of acetone, butanol, and ethanol production from woody biomass using organosolv pretreatment. Bioprocess and Biosystems Engineering, 38, 1959–1972.

    Article  CAS  Google Scholar 

  50. Trinh, L., Lee, Y. J., Lee, J., & Lee, H. (2015). Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass and Bioenergy, 81, 1–8.

    Article  CAS  Google Scholar 

  51. Koo, B. W., Min, B. C., Gwak, K. S., Lee, S. M., Choi, J. W., Yeo, H., & Choi, I. G. (2012). Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy, 42, 24–32.

    Article  CAS  Google Scholar 

  52. González, L. M. L., Reyes, I. P., Dewulf, J., Budde, J., Heiermann, M., & Vervaeren, H. (2014). Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresource Technology, 169, 284–290.

    Article  Google Scholar 

  53. Baral, N. R., & Shah, A. (2014). Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 98, 9151–9172.

    Article  CAS  Google Scholar 

  54. Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable Sustainable Energy Reviews, 36, 91–106.

    Article  CAS  Google Scholar 

  55. Hodge, D. B., Andersson, C., Berglund, K. A., & De, U. R. (2009). Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme Microbiology and Technology, 44, 309–316.

    Article  CAS  Google Scholar 

  56. García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: how to improve the efficiency. Renewable Sustainable Energy Reviews, 15, 964–980.

    Article  Google Scholar 

  57. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnology and Bioengineering, 97, 1460–1469.

    Article  CAS  Google Scholar 

  58. Diez-Antolinez, R., Hijosa-Valsero, M., Paniagua, A. I., & Gomez, X. (2016). Effect of nutrient supplementation on biobutanol production from cheese whey by ABE (acetone-butanol-ethanol) fermentation. Chemical Engineering Transactions, 49, 217–222.

    Google Scholar 

  59. Survase, S. A., Sklavounos, E., Jurgens, G., Heiningen, A., & Granström, T. (2011). Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce. Bioresource Technology, 102, 10996–11002.

    Article  CAS  Google Scholar 

  60. Wang, Y., Li, X., & Blaschek, H. P. (2013). Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-seq. Biotechnology for Biofuels, 6, 138.

    Article  CAS  Google Scholar 

  61. Cho, D. H., Shin, S. J., & Kim, Y. H. (2012). Effects of acetic and formic acid on ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology and Bioprocess Engineering, 17, 270–275.

    Article  CAS  Google Scholar 

  62. Avila-Gaxiola, E., Avila-Gaxiola, J., Velarde-Escobar, O., Ramos-Brito, F., Atondo-Rubio, G., & Yee-Rendon, C. (2016). Effect of drying temperature on Agave tequilana leaves: a pretreatment for releasing reducing sugars for biofuel production. Journal of Food Process Engineering. doi:10.1111/jfpe.12455.

  63. Radjaram, B., & Saravanane, R. (2011). Assessment of optimum dilution ratio for biohydrogen production by anaerobic co-digestion of press mud with sewage and water. Bioresource Technology, 102, 2773–2780.

    Article  CAS  Google Scholar 

  64. Kumar, R., & Kesavapillai, B. (2012). Stimulation of extracellular invertase production from spent yeast when sugarcane press mud used as substrate through solid state fermentation. Springer Plus, 1, 81.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Science and Technology (DST) of the Ministry of Science and Technology, Government of India, for providing financial support under the scheme of the DST INSPIRE Faculty Award (IFA 13-ENG-68/July 28, 2014) during the course of this investigation. The authors are also thankful to Radhika Malkar and Manoj Kamble from the Institute of Chemical Technology, Mumbai, for their help with SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip B. Bankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimbalkar, P.R., Khedkar, M.A., Gaikwad, S.G. et al. New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527. Appl Biochem Biotechnol 183, 1008–1025 (2017). https://doi.org/10.1007/s12010-017-2479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2479-3

Keywords

Navigation