Skip to main content
Log in

Sonochemical Effect on Activity and Conformation of Commercial Lipases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzyme under lower-intensity ultrasonic irradiation leads to favourable conformational changes, thereby enhancing its activity. The augmentation of activity of ultrasound-treated enzyme is strongly dependent on ultrasound intensity, duty cycle and exposure time, which was investigated for commercial lipases. Thermomyces lanuginosus (TL) lipase showed a 1.3-fold enhanced activity after irradiating at 22 kHz and 11.38 W cm−2 with 50 % duty cycle for 25-min ultrasonic treatment and 1.5-fold enhanced activity was observed for lipozyme (candida antarctica lipase B (CALB)) lipase, at 22 kHz and 15.48 W cm−2 with 66.67 % duty cycle for 20-min ultrasonic treatment. After sonication, thermodynamic parameters viz. E a, ΔH, ΔS and ΔG were evaluated and values were found to be significantly lower for both lipases. In addition, the changes in secondary structure due to sonication were investigated by using Fourier transform infrared (FT-IR), which revealed increase in a certain number of random coiled structure, loss of β-sheets, β-turns and α-helix content in TL lipase and CALB lipase. Also, fluorescence spectroscopy exhibited the increased number of tryptophan on surface of both lipases. Moreover, particle size distribution after sonication also helped to improve surface area and enhanced mass transfer, which contributed to improvement in lipase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: a review. Biotechnology Advances, 28, 628–634.

    Article  CAS  Google Scholar 

  2. Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: an overview. Journal of Molecular Catalysis B: Enzymatic, 62, 9–14.

    Article  CAS  Google Scholar 

  3. Goswami, D., Basu, J. K., & De, D. (2013). Lipase applications in oil hydrolysis with a case study on castor oil: a review. Critical Reviews in Biotechnology, 33, 81–96.

    Article  CAS  Google Scholar 

  4. Tomke, P. D., & Rathod, V. K. (2015). Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium. Ultrasonics Sonochemistry, 27, 241–251.

    Article  CAS  Google Scholar 

  5. Khan, N. R., Jadhav, S. V., & Rathod, V. K. (2015). Lipase catalysed synthesis of cetyl oleate using ultrasound: optimisation and kinetic studies. Ultrasonics Sonochemistry, 27, 522–529.

    Article  CAS  Google Scholar 

  6. Rodrigues, R. C., & Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. Journal of Molecular Catalysis B: Enzymatic, 66, 15–32.

    Article  CAS  Google Scholar 

  7. Soumanou, M. M., Pérignon, M., & Villeneuve, P. (2013). Lipase-catalyzed interesterification reactions for human milk fat substitutes production: a review. Eur Lipid J Technol Sci., 115, 270–285.

    Article  CAS  Google Scholar 

  8. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  9. Cunha, A. G., Besteti, M. D., Manoel, E. A., da Silva, A. A. T., Almeida, R. V., Simas, A. B. C., Fernandez-Lafuente, R., Pinto, J. C., & Freire, D. M. G. (2014). Preparation of core–shell polymer supports to immobilize lipase B from Candida Antarctica effect of the support nature on catalytic. Journal of Molecular Catalysis B: Enzymatic, 100, 59–67.

    Article  CAS  Google Scholar 

  10. Manoel, E. A., Dos Santos, J. C. S., Freire, D. M. G., Rueda, N., & Fernandez-Lafuente, R. (2015). Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 71, 53–57.

    Article  CAS  Google Scholar 

  11. Akoh, C. C., Lee, G., & Shaw, J. (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39, 513–526.

    Article  CAS  Google Scholar 

  12. Souza, M., Mezadri, E. T., Zimmerman, E., Leaes, E. X., Bassaco, M. M., Pra, V. D., Foletto, E., Cancellier, A., Terra, L. M., Jahn, S. L., & Mazutti, M. A. (2013). Evaluation of activity of a commercial amylase under ultrasound-assisted irradiation. Ultrasonics Sonochemistry, 20, 89–94.

    Article  CAS  Google Scholar 

  13. Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44, 60–72.

    Article  CAS  Google Scholar 

  14. Gogate, P. R. (2008). Cavitational reactors for process intensification of chemical processing applications: a critical review. Chemical Engineering and Processing, 47, 515–527.

    Article  CAS  Google Scholar 

  15. O’Donnell, C. P., Tiwari, B. K., Bourke, P., & Cullen, P. J. (2010). Effect of ultrasonic processing on food enzymes of industrial importance. Trends in Food Science & Technology, 2, 358–367.

    Article  Google Scholar 

  16. Braginskaya, F. I., Zaitzeva, E. A., Zorina, O. M., Poltorak, O. M., Chukrai, E. S., & Dunn, F. (1990). Low intensity ultrasonic effects on yeast hexokinase. Radiation and Environmental Biophysics, 29, 47–56.

    Article  CAS  Google Scholar 

  17. Mawson, R., Gamage, M., Terefe, N. S., & Knoerzer, K. (2011). Ultrasound in enzyme activation and inactivation. Ultrasound Technologies for Food and Bioprocessing, 14, 369–404.

    Article  Google Scholar 

  18. Subhedar, P. B., & Gogate, P. R. (2014). Enhancing the activity of cellulase enzyme using ultrasonic irradiations. Journal of Molecular Catalysis B: Enzymatic, 101, 108–114.

    Article  CAS  Google Scholar 

  19. Guiseppi-Elie, A., Choi, S. H., & Geckeler, K. E. (2009). Ultrasonic processing of enzymes: effect on enzymatic activity of glucose oxidase. Journal of Molecular Catalysis B: Enzymatic, 58, 18–123.

    Article  Google Scholar 

  20. Bashari, M., Eibaid, A., Wang, J., Tian, Y., Xu, X., & Jin, Z. (2013). Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrasonics Sonochemistry, 20, 155–161.

    Article  CAS  Google Scholar 

  21. Lindomar, A. L., Raquel, A. L., Daniela, R., Mara, C. Z., Manuela, B., Vendelino, O. N., Jorge, L. N., Cla’udia, M., Vladimir, O., & de De’bora, O. (2014). A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess and Biosystems Engineering, 37, 2381–2394.

    Article  Google Scholar 

  22. Dey, S., & Rathod, V. K. (2013). Ultrasound assisted extraction of b-carotene from Spirulina platensis. Ultrasonics Sonochemistry, 20, 271–276.

    Article  CAS  Google Scholar 

  23. Palacios, D., Busto, M. D., & Ortega, N. (2014). Study of a new spectrophotometric end-point assay for lipase activity determination in aqueous media. LWT-Food Science and Technology, 55, 536–542.

    Article  CAS  Google Scholar 

  24. Talekar, S., Nadar, S., Joshi, A., & Joshi, G. (2014). Pectin cross-linked enzyme aggregates (pectin-CLEAs) of glucoamylase. RSC Advances, 4, 59444–59453.

    Article  CAS  Google Scholar 

  25. Sojitra, U. V., Nadar, S. S., & Rathod, V. K. (2016). Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydrate Polymers. doi:10.1016/j.carbpol.2016.10.018.

    Google Scholar 

  26. Yu, Z., Zeng, W., Zhang, W., Liao, X., & Shi, B. (2014). Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin. Ultrasonics Sonochemistry, 21, 930–936.

    Article  CAS  Google Scholar 

  27. Maa, H., Huang, L., Jia, J., He, R., Luo, L., & Zhu, W. (2011). Effect of energy-gathered ultrasound on alcalase. Ultrasonics Sonochemistry, 18, 419–424.

    Article  Google Scholar 

  28. Rokhina, E. V., Lens, P., & Virkutyte, J. (2009). Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, 27, 298–306.

    Article  CAS  Google Scholar 

  29. Gebicka, L., & Gekicki, J. L. (1997). The effect of ultrasound on heme enzymes in aqueous solution. Journal of Enzyme Inhibition and Medicinal Chemistry, 12, 133–141.

    Article  CAS  Google Scholar 

  30. Basto, C., Silva, C. J., Gubitz, G., & Cavaco-Paulo, A. (2007). Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields. Ultrasonics Sonochemistry, 14, 355–362.

    Article  CAS  Google Scholar 

  31. Szabo, O. E., & Csiszar, E. (2013). The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme. Carbohydrate Polymers, 98, 1483–1489.

    Article  CAS  Google Scholar 

  32. Bhasarkar, J., Arup, J. B., Goswami, P., & Moholkar, V. S. (2015). Mechanistic analysis of ultrasound assisted enzymatic desulfurization of liquid fuels using horseradish peroxidase. Bioresource Techn., 196, 88–98.

    Article  CAS  Google Scholar 

  33. Kadkhodaee, R., & Malcolm, J. W. (2008). Ultrasonic inactivation of Bacillus a-amylase. I. Effect of gas content and emitting face of probe. Ultrasonics Sonochem., 15, 133–142.

    Article  CAS  Google Scholar 

  34. Khanna, S., Goyal, A., & Moholkar, V. S. (2013). Mechanistic investigation of ultrasonic enhancement of glycerol bioconversion by immobilized Clostridium pasteurianum on silica support. Biotechnology and Bioengineering, 110, 1637–1645.

    Article  CAS  Google Scholar 

  35. Malani, R. S., Khanna, S., Chakma, S., & Moholkar, V. S. (2014). Mechanistic insight into sono-enzymatic degradation of organic pollutants with kinetic and thermodynamic analysis. Ultrasonics Sonochemistry, 21, 1400–1406.

    Article  CAS  Google Scholar 

  36. Qu, W., Maa, H., Liu, B., He, R., & Pan, Z. (2013). Enzymolysis reaction kinetics and thermodynamics of defatted wheat germ protein with ultrasonic pretreatment. Ultrasonics Sonochemistry, 20, 1408–1413.

    Article  CAS  Google Scholar 

  37. Jadhav, S. H., & Gogate, P. R. (2014). Intensification in the activity of lipase enzyme using ultrasonic irradiation and stability studies. Industrial and Engineering Chemistry Research, 53, 1377–1385.

    Article  CAS  Google Scholar 

  38. Knorr, D., Zenker, M., Heinz, V., & Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15, 261–266.

    Article  CAS  Google Scholar 

  39. Sulaiman, A. Z., Ajit, A., & Chisti, Y. (2013). Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. Biotechnology Progress, 29, 1–10.

    Article  Google Scholar 

  40. Yu, Z., Zeng, W., & Lu, X. (2013). Influence of ultrasound to the activity of tyrosinase. Ultrasonics Sonochemistry, 20, 805–809.

    Article  CAS  Google Scholar 

  41. Nadar, S., Gawas, S., & Rathod, V. K. (2016). Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2016.06.071.

    Google Scholar 

  42. Nadar, S., Muley, A., Ladole, M., & Joshi, P. (2016). Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. International Journal of Biological Macromolecules, 84, 69–78.

    Article  CAS  Google Scholar 

  43. Gulseren, I., Güzey, D., Bruce, B. D., & Weiss, J. (2007). Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry, 14, 173–183.

    Article  Google Scholar 

  44. Wang, Z., Lin, X., Li, P., Zhang, J., Wanga, S., & Ma, H. (2012). Effects of low intensity ultrasound on cellulase pretreatment. Bioresource Technology, 117, 222–227.

    Article  CAS  Google Scholar 

  45. Jambrak, A. R., Mason, T. J., Lelas, V., Paniwnyk, L., & Herceg, Z. (2014). Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, 121, 5–23.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the University Grants Commission (UGC) of India for financially supporting the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra K. Rathod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadar, S.S., Rathod, V.K. Sonochemical Effect on Activity and Conformation of Commercial Lipases. Appl Biochem Biotechnol 181, 1435–1453 (2017). https://doi.org/10.1007/s12010-016-2294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2294-2

Keywords

Navigation