Skip to main content
Log in

Catalytic Role of Thermostable Metalloproteases from Bacillus subtilis KT004404 as Dehairing and Destaining Agent

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proteases with characteristic stabilities are considered attractive candidates for industrial catalysis. In the present study, a potent bacterial strain KT004404, an inhabitant of hydrothermal vents, was isolated and characterized for protease production. Initial screening indicated that this strain produced a hydrolytic zone of 30 mm 16S rRNA-based identification revealed that our isolate was a strain of Bacillus subtilis. Optimum reaction condition for maximum protease production was determined as 55 °C, pH 6, 1 % inoculum size and malt extract as primary growth substrate supplemented with 1 % dextrose. Yield of the enzyme was increased up to 7.53 folds with a specific activity of 55.125 U/mg after gel filtration chromatography. SDS-PAGE analysis confirmed the size of protease as 28.24 kDa. Purified enzyme retained its catalytic activity over a broad range of temperature (5 to 65 °C) and pH [5–8]. Addition of metal ions shown to have a stimulatory effect on catalytic properties while EDTA inhibited the efficiency of the enzyme confirming it as a metalloprotease. Protease exhibited excellent stability and activity in the presence of anionic surfactants, solvents, and detergents. The results of dehairing and destaining experiments suggested that the protease produced by B. subtilis KT004404 could be used in leather and textile industries with ecological benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rai, S. K., and Mukherjee, A. K. (2010). Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochemical Engineering Journal,48(2), 173–180.

  2. Deb, P., Talukdar, S. A., Mohsina, K., Sarker, P. K., & Sayem, S. (2013). Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springer Plus, 2, 154.

    Article  Google Scholar 

  3. Singhal, P., Nigam, V., & Vidyarthi, A. (2012). Studies on production, characterization and applications of microbial alkaline proteases. International Journal of Advanced Biotechnology and Research, 3(3), 653–669.

    CAS  Google Scholar 

  4. Saleem, M., Rehman, A., Yasmin, R., & Munir, B. (2012). Biochemical analysis and investigation on the prospective applications of alkaline protease from a Bacillus cereus strain. Molecular Biology Reports, 39(6), 6399–6408.

    Article  CAS  Google Scholar 

  5. Khan, F. (2013). New microbial proteases in leather and detergent industries. Innovative Research in. Chemistry, 1(1), 1–6.

    CAS  Google Scholar 

  6. Akhtaruzzaman, M., Mozumder, N. R., Jamal, R., Rahman, A., & Rahman, T. (2012). Isolation and characterization protease enzyme from leguminous seeds. Agric. Sci. Res. J., 2, 434–440.

    Google Scholar 

  7. Boominadhan, U., Rajakumar, R., Sivakumaar, P. K. V., & Joe, M. M. (2009). Optimization of protease enzyme production using Bacillus sp. isolated from different wastes. Bot. Res. Int, 2(2), 83–87.

    CAS  Google Scholar 

  8. Vadlamani, S., & Parcha, S. R. (2012). Optimization of alkaline protease production from locally isolated Bacillus sp. Bacillus firmus from soil microorganisms in batch culture using statistical design. Optimization, 2(2), 917–924.

    Google Scholar 

  9. Padmapriya, B., Rajeswari, T., Nandita, R., & Raj, F. (2012). Production and purification of alkaline serine protease from marine Bacillus species and its application in detergent industry. Eur J Appl Sci, 4, 21–26.

    Google Scholar 

  10. Sevinc, N., & Demirkan, E. (2011). Production of protease by Bacillus sp. N-40 isolated from soil and its enzymatic properties. J Biol Environ Sci, 5(14), 95–103.

    Google Scholar 

  11. Chandan, P., Iti, S., & Dinesh, K. (2011). Production of a thermostable and alkaline protease by Bacillus subtilis MTCC 9226. Research Journal of Biotechnology, 6(2), 44–48.

    CAS  Google Scholar 

  12. Jayakumar, R., Jayashree, S., Annapurna, B., & Seshadri, S. (2012). Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Applied Biochemistry and Biotechnology, 168(7), 1849–1866.

    Article  CAS  Google Scholar 

  13. Mukhtar, H., & Haq, I. (2008). Production of alkaline protease by Bacillus subtilis and its application as a depilating agent in leather processing. Pakistan Journal of Botany, 40(4), 1673–1679.

    CAS  Google Scholar 

  14. Sivaprakasam, S., Dhandapani, B., & Mahadevan, S. (2011). Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment. Brazilian Journal of Microbiology, 42, 1506–1515.

    Article  CAS  Google Scholar 

  15. Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 100, 3366–3373.

    Article  CAS  Google Scholar 

  16. Krishnaveni, K., Mukesh, D. J., Balakumaran, M., Ramesh, S., & Kalaichelvan, P. (2012). Production and optimization of extracellular alkaline protease from Bacillus subtilis isolated from dairy effluent. Der Pharmacia Lettre, 4(1), 98–109.

    CAS  Google Scholar 

  17. Balachandran, C., Duraipandiyan, V., & Ignacimuthu, S. (2012). Purification and characterization of protease enzyme from actinomycetes and its cytotoxic effect on cancer cell line (A549). Asian Pacific Journal of. Tropical Biomedicine, 2(1), S392–S400.

    Article  Google Scholar 

  18. Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., & Bejar, S. (2008). Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie, 90(9), 1291–1305.

    Article  CAS  Google Scholar 

  19. Sehar, S., & Hameed, A. (2011). Extracellular alkaline protease by a newly isolated halophilic Bacillus sp. Global Journal of Biotechnology and Biochemistry, 6(3), 142–148.

    CAS  Google Scholar 

  20. Medina, P., & Baresi, L. (2007). Rapid identification of gelatin and casein hydrolysis using TCA. Journal of Microbiological Methods, 69(2), 391–393.

    Article  CAS  Google Scholar 

  21. Sazci, A., Erenler, K., & Radford, A. (1986). Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. Journal of Applied Bacteriology, 61(6), 559–562.

    Article  CAS  Google Scholar 

  22. Vermelho, A. B., Meirelles, M. N. L., Lopes, A., Petinate, S. D. G., Chaia, A. A., & Branquinha, M. H. (1996). Detection of extracellular proteases from microorganisms on agar plates. Memorias do Instituto Oswaldo Cruz, 91(6), 755–760.

    Article  CAS  Google Scholar 

  23. Kunitz, M. (1947). Isolation of a crystalline protein compound of trypsin and of soybean trypsin-inhibitor. The Journal of General Physiology, 30(4), 311–320.

    Article  CAS  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Rehman, A., Chahal, M. S., Tang, X., Bruce, J. E., Pommier, Y., & Daoud, S. S. (2005). Proteomic identification of heat shock protein 90 as a candidate target for p53 mutation reactivation by PRIMA-1 in breast cancer cells. Breast Cancer Research, 7(5), 1.

    Article  Google Scholar 

  27. Kumar, D. M., Venkatachalam, P., Govindarajan, N., Balakumaran, M., & Kalaichelvan, P. (2012). Production and purification of alkaline protease from Bacillus sp. MPTK 712 isolated from dairy sludge. Glob. Vet, 8, 433–439.

    CAS  Google Scholar 

  28. Rahman, R. N. Z. R. A., Geok, L. P., Basri, M., & Salleh, A. B. (2006). An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: enzyme purification and characterization. Enzyme and Microbial Technology, 39(7), 1484–1491.

    Article  Google Scholar 

  29. Chen, S., Oldham, M. L., Davidson, A. L., & Chen, J. (2013). Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature, 499(7458), 364–368.

    Article  CAS  Google Scholar 

  30. Qadar, S. A. U., Shireen, E., Iqbal, S., & Anwar, A. (2009). Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3. Indian Journal of Biotechnology, 8(3), 286–290.

    Google Scholar 

  31. Odu, N., & Akujobi, C. (2012). Protease production capabilities of Micrococcus luteus and Bacillus species isolated from abattoir environment. Journal of Microbiology Research, 2(5), 127–132.

    Article  Google Scholar 

  32. Sivakumar, T., Shankar, T., & Ramasubramanian, V. (2012). Purification properties of Bacillus thuringiensis TS2 keratinase enzyme. American-Eurasian J Agric Environ Scie, 12, 1553–1557.

    CAS  Google Scholar 

  33. Wang, S., Lin, X., Huang, X., Zheng, L., & Zilda, D. S. (2012). Screening and characterization of the alkaline protease isolated from PLI-1, a strain of Brevibacillus sp. collected from Indonesia’s hot springs. Journal of Ocean University of China, 11(2), 213–218.

    Article  CAS  Google Scholar 

  34. Park, C. H., Lee, S. J., Lee, S. G., Lee, W. S., & Byun, S. M. (2004). Hetero-and autoprocessing of the extracellular metalloprotease (Mpr) in Bacillus subtilis. Journal of Bacteriology, 186(19), 6457–6464.

    Article  CAS  Google Scholar 

  35. Bose, S. K. (2011). Characterization of multiple extracellular proteases produced by a Bacillus subtilis strain and identification of the strain. International Journal of Biology, 3(1), 101.

    Google Scholar 

  36. Sanghvi, G., Patel, H., Vaishnav, D., Oza, T., Dave, G., Kunjadia, P., & Sheth, N. (2016). A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation. International Journal of Biological Macromolecules, 87, 256–262.

    Article  CAS  Google Scholar 

  37. De Azeredo, L., Freire, D., Soares, R., Leite, S., & Coelho, R. (2004). Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzyme and Microbial Technology, 34(3), 354–358.

    Article  CAS  Google Scholar 

  38. Doddapaneni, K. K., Tatineni, R., Vellanki, R. N., Rachcha, S., Anabrolu, N., Narakuti, V., & Mangamoori, L. N. (2009). Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiological Research, 164(4), 383–390.

    Article  CAS  Google Scholar 

  39. Gupta, A., Roy, I., Patel, R., Singh, S., Khare, S., & Gupta, M. (2005). One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. Journal of Chromatography A, 1075(1), 103–108.

    Article  CAS  Google Scholar 

  40. Omidinia, E. (2012). Isolation, purification and characterization of a thermophilic alkaline protease from Bacillus subtilis BP-36. Journal of Sciences, Islamic Republic of Iran, 23(1), 7–13.

    Google Scholar 

  41. Tiberti, M., & Papaleo, E. (2011). Dynamic properties of extremophilic subtilisin-like serine-proteases. Journal of Structural Biology, 174(1), 69–83.

    Article  CAS  Google Scholar 

  42. Wilson, P., & Remigio, Z. (2012). Production and characterisation of protease enzyme produced by a novel moderate thermophilic bacterium (EP1001) isolated from an alkaline hot spring, Zimbabwe. African Journal of Microbiology Research, 6(27), 5542–5551.

    CAS  Google Scholar 

  43. Singh, S. K., Tripathi, V., & Garg, S. (2013). An oxidant, detergent and salt stable alkaline protease from Bacillus cereus SIU1. African Journal of Biotechnology, 10(57), 12257–12261.

    Google Scholar 

  44. Wu, J.-W., & Chen, X.-L. (2011). Extracellular metalloproteases from bacteria. Applied Microbiology and Biotechnology, 92(2), 253–262.

    Article  CAS  Google Scholar 

  45. Adinarayana, K., Ellaiah, P., & Prasad, D. S. (2003). Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS PharmSciTech, 4(4), 440–448.

    Article  Google Scholar 

  46. Annamalai, N., Rajeswari, M. V., Sahu, S. K., & Balasubramanian, T. (2014). Purification and characterization of solvent stable, alkaline protease from Bacillus firmus CAS 7 by microbial conversion of marine wastes and molecular mechanism underlying solvent stability. Process Biochemistry, 49(6), 1012–1019.

    Article  CAS  Google Scholar 

  47. Karbalaei-Heidari, H. R., Shahbazi, M., & Absalan, G. (2013). Characterization of a novel organic solvent tolerant protease from a moderately halophilic bacterium and its behavior in ionic liquids. Applied Biochemistry and Biotechnology, 170(3), 573–586.

    Article  CAS  Google Scholar 

  48. Sinha, R., & Khare, S. (2013). Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity. Bioresource Technology, 145, 357–361.

    Article  CAS  Google Scholar 

  49. Najafi, M. F., Deobagkar, D., & Deobagkar, D. (2005). Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electronic Journal of Biotechnology, 8(2), 79–85.

    Article  Google Scholar 

  50. Agarwal, R., D’Souza, T., & Morin, P. J. (2005). Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Research, 65(16), 7378–7385.

    Article  CAS  Google Scholar 

  51. Shah, K., Mody, K., Keshri, J., & Jha, B. (2010). Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. Journal of Molecular Catalysis B: Enzymatic, 67(1), 85–91.

    Article  CAS  Google Scholar 

  52. Joshi, S., & Satyanarayana, T. (2013). Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresource Technology, 131, 76–85.

    Article  CAS  Google Scholar 

  53. Tork, S. E., Shahein, Y. E., El-Hakim, A. E., Abdel-Aty, A. M., & Aly, M. M. (2013). Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. International Journal of Biological Macromolecules, 55, 169–175.

    Article  CAS  Google Scholar 

  54. Senthilvelan, T., Kanagaraj, J., & Mandal, A. (2012). Application of enzymes for dehairing of skins: cleaner leather processing. Clean Technologies and Environmental Policy, 14(5), 889–897.

    Article  CAS  Google Scholar 

  55. Maurer, K.-H. (2004). Detergent proteases. Current Opinion in Biotechnology, 15(4), 330–334.

    Article  CAS  Google Scholar 

  56. Bezawada, J., Yan, S., John, R. P., Tyagi, R., and Surampalli, R. (2011). Recovery of Bacillus licheniformis alkaline protease from supernatant of fermented wastewater sludge using ultrafiltration and its characterization. Biotechnology research international.

  57. Tambekar, S., and Tambekar, D. (2013). Compatibility and wash performance analysis of alkaline protease from Bacillus pseudofirmus (JQ337958) with commercial detergents. International Journal of Pharmaceutical, chemical and biological sciences.

Download references

Acknowledgments

We are thankful to the Department of Microbiology, Quaid-i-Azam University, Islamabad, for providing financial resources for the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Jamal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, R., Ahmed, M., Siddique, A. et al. Catalytic Role of Thermostable Metalloproteases from Bacillus subtilis KT004404 as Dehairing and Destaining Agent. Appl Biochem Biotechnol 181, 434–450 (2017). https://doi.org/10.1007/s12010-016-2222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2222-5

Keywords

Navigation