Skip to main content

Advertisement

Log in

The Environmental Issues of DDT Pollution and Bioremediation: a Multidisciplinary Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is probably the best known and most useful organochlorine insecticide in the world which was used since 1945 for agricultural purposes and also for vector-borne disease control such as malaria since 1955, until its banishment in most countries by the Stockholm convention for ecologic considerations. However, the World Health Organization allowed its reintroduction only for control of vector-borne diseases in some tropical countries in 2006. Due to its physicochemical properties and specially its persistence related with a half-life up to 30 years, DDT linked to several health and social problems which are due to its accumulation in the environment and its biomagnification properties in living organisms. This manuscript compiles a multidisciplinary review to evaluate primarily (i) the worldwide contamination of DDT and (ii) its (eco) toxicological impact onto living organisms. Secondly, several ways for DDT bioremediation from contaminated environment are discussed. For this, reports on DDT biodegradation capabilities by microorganisms and ways to enhance bioremediation strategies to remove DDT are presented. The different existing strategies for DDT bioremediation are evaluated with their efficiencies and limitations to struggle efficiently this contaminant. Finally, rising new approaches and technological bottlenecks to promote DDT bioremediation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BRF:

Brown-rot fungi

CBA:

Chlorobenzoic acid

DBP:

4,4ʹ-dichlorobenzophenone

DDA:

2,2-bis(p-chlorophenyl) acetate

DDD:

1,1-dichloro-2,2-bis(p-chlorophenyl) ethane

DDE:

1,1-dichloro- 2,2-bis(p-chlorophenyl) ethylene

DDM:

Bis(4ʹ-chlorophenyl)methane

DDMU:

1-chloro-2-2-bis-(4ʹ-chlorophenyl) ethylene

DDMS:

1-chloro-2,2-bis(4′-chlorophenyl) ethane

DDNU:

1,1-bis(4-chlorophenyl) ethylene

DDNS:

2,2-bis(p-chlorophenyl) ethane

DDOH:

2,2-bis(4′-chlorophenyl) ethanol

DDT:

1,1,1-dichlorodiphenyl trichloroethane

o,pʹ-DDT:

1,1,1-dichlorodiphenyl trichloroethane

p,pʹ-DDT:

1,1,1-dichlorodiphenyl trichloroethane

DDTs:

DDT and by-products

EPA:

Environmental Protection Agency

LC50 :

Lethal concentration 50 %

LD50 :

Lethal dose 50 %

nRBT:

Not readily biodegradable

OCP:

Organochlorine pesticides

RBT:

Readily biodegradable

UNEP:

United Nations Environment Programme

WHO:

World Health Organization

WRF:

White-Rot Fungi

References

  1. Metcalf, R. L. (1995). Insect control technology. In J. Kroschwitz & M. Howe-Grant (Eds.), Kirk-Othemer encyclopedia of chemical technology (Vol. 14, pp. 524–602). New York, NY: Wiley.

    Google Scholar 

  2. Kannan, K., Tanabe, S., & Williams, R. J. (1994). Persistent organochlorine residues in foodstuffs from Australia, Papua New Guinea and the Solomon Islands: contamination levels and dietary exposure. Science of the Total Environment, 1994, 153, 29–49.

    Article  CAS  Google Scholar 

  3. Kelce, W. R., Stone, C. R., Laws, S. C., Gray, L. E., Kemppainen, J. A., & Wilson, E. M. (1995). Persistent DDT metabolite p,p_-DDE is a potent androgen receptor antagonist. Nature, 375, 581–585.

    Article  CAS  Google Scholar 

  4. : Tren, R., and Bate, R. (2004). In policy analysis, vol 513: South Africa’s war against malaria–lessons for the developing world, pp. 1–19

  5. Wurl, O., & Obbard, J. P. (2005). Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore’s coastal marine sediments. Chemosphere, 58, 925–933.

    Article  CAS  Google Scholar 

  6. Lin, T., Hu, Z., Zhang, G., Li, X., Xu, W., Tang, J., & Li, J. (2009). Levels and mass burden of DDTs in sediments from fishing harbors: the importance of DDT-containing antifouling paint to the coastal environment of China. Environmental Science & Technology., 43, 8033–8038.

    Article  CAS  Google Scholar 

  7. : Van de Plassche, E.J., Schwegler, A.M.G.R., Rasenberg M, & Schouten G. (2002). DDT in dicofol. In Further assessment of persistent organic pollutants (POPs). Compendium of substance-related information. Convention on Long-Range Transboundary Air Pollution. UNECE.

  8. : United Nations Environment Programme (2001). NEP/POPS/CONF/INF/1/Rev 3.

  9. Zhang, G., Parker, A., House, A., Mai, B., Li, X., & Kang, Y. (2002). Sedimentary records of DDT and HCH in the Pearl River Delta, South China. Environmental Science & Technology, 36, 3671–3677.

    Article  CAS  Google Scholar 

  10. : Agency for Toxic Substances and Disease Registry (ATSDR) (2002). Toxicological profile for DDT, DDE, DDD. U.S. Department of Health and Human Services. Public Health Service Atlanta, GA. Available on the Internet at: http://www.atsdr.cdc.gov/toxprofiles/tp35.html.

  11. World Health Organization (WHO) (1989). Environmental health criteria 83, DDT and its derivatives—environmental effects. Geneva: World Health Organization.

    Google Scholar 

  12. Meister, R., & Sine, C. (1999). Farm chemicals handbook (pp. C123–C124) . Willoughby, OH: Meister Publication Company.As cited in ATSDR, 2002

    Google Scholar 

  13. : World Health Organization (WHO) (2007). The use of DDT in malaria vector control. Global Malaria Program.

  14. Minh, T. B., Kunisue, T., Yen, N. T., Watanabe, M., Tanabe, S., Hue, N. D., & Qui, V. (2002). Persistent organochlorine residues and their bioaccumulation profiles in resident and migratory birds from North Vietnam. Environmental Toxicology and Chemistry, 21, 2108–2118.

    Article  CAS  Google Scholar 

  15. Monirith, I., Ueno, D., Takahashi, S. H., Nakata, H., Sudaryanto, A., & Subramanian, A. (2003). Asia-pacific mussel watch: monitoring contamination of persistent organochlorine compounds in coastal waters of Asian countries. Marine Pollution Bulletin, 46, 281–300.

    Article  CAS  Google Scholar 

  16. Nakata, H., Hirakawa, Y., Kawazoe, M., Nakabo, T., Arizono, K., & Abe, S. (2005). Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake tai, Hangzhou Bay and shanghai city region. China. Environmental Pollution., 133, 415–429.

    Article  CAS  Google Scholar 

  17. Van den Berg, H. (2009). Global status of DDT and its alternatives for use in vector control to prevent disease. Environmental Health Perspectives., 117, 1656–1663.

    Article  Google Scholar 

  18. Sanger, D. M., Holland, A. F., & Scott, G. I. (1999). Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants. Archives of Environmental Contamination and Toxicology, 37, 458–471.

    Article  CAS  Google Scholar 

  19. Pozo, K., Harner, T., Wania, F., Muir, D. C. G., Jones, K. C., & Barrie, L. A. (2006). Toward a global network for persistent organic pollutants in air: results from the GAPS study. Environmental Science & Technology, 40, 4867–4873.

    Article  CAS  Google Scholar 

  20. Logan, B. E. (1999). Environmental transport processes. New York: Wiley.

    Google Scholar 

  21. Dalla Villa, R. D., & Pupo Nogueira, R. F. (2006). Oxidation of p,pʹDDT and p,pʹDDE in highly and long-term contaminated soil using Fenton reaction in slurry system. Science of the Total Environment, 371, 11–18.

    Article  CAS  Google Scholar 

  22. Bakan, G., & Ariman, S. (2004). Persistent organochlorine residues in sediments along the coast of mid-Black Sea region of Turkey. Marine Pollution Bulletin., 48, 1031–1039.

    Article  CAS  Google Scholar 

  23. Pimentel, D., Andow, D., Dyson-Hudson, R., Gatlahan, D., Jacobson, S., Irish, M., Kroop, S., Moss, A., Schreiner, I., Shepard, M., Thompson, T., & Vinzant, B. (1980). Environmental and social costs of pesticides: a preliminary assessment. Oikos, 34, 126–140.

    Article  Google Scholar 

  24. Anitescu, G., & Tavlarides, L. L. (2006). Supercritical extraction of contaminants from soils and sediments. The Journal of Supercritical Fluids., 38, 167–180.

    Article  CAS  Google Scholar 

  25. : Agency for Toxic Substances and Diseases Registry (ATSDR)/US Public Health Service (1994). ATSDR. Atlanta, GA. 704

  26. Eqani, S. A., Malik, R. N., & Mohammad, A. (2011). The level and distribution of selected organochlorine pesticides in sediments from river Chenab, Pakistan. Environmental Geochemistry and Health, 33, 33–47.

    Article  CAS  Google Scholar 

  27. Asogwa, E. U., & Dongo, L. N. (2009). Problems associated with pesticide usage and application in Nigerian cocoa production: a review. African Journal of Agricultural Research, 4, 675–683.

    Google Scholar 

  28. Ogbeide, O., Tongo, I., & Ezemonye, L. (2015). Risk assessment of agricultural pesticides in water, sediment, and fish from Owan River, Edo state, Nigeria. Environmental Monitoring and Assessment., 187, 654–666.

    Article  CAS  Google Scholar 

  29. Guo, L., Qiu, Y., Zhang, G., Zheng, G. J., Lam, P. K. S., & Li, X. (2008). Levels and bioaccumulation of organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in fishes from the Pearl River estuary and Daya Bay, South China. Environmental Pollution., 152, 604–611.

    Article  CAS  Google Scholar 

  30. Li, C., Ren, H., Yin, E., Tang, S., Li, Y., & Cao, J. (2015). Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis. Environmental Science and Pollution Research, 22, 9483–9493.

    Article  CAS  Google Scholar 

  31. Grung, M., Lin, Y., Zhang, H., Steen, A., Huang, J., Zhang, G., & Larssen, T. (2015). Pesticide levels and environmental risk in aquatic environments in China. A review. Environment International., 81, 87–97.

    Article  CAS  Google Scholar 

  32. Mamta Rao, R. J., & Wani, K. A. (2015). Concentration of organochlorine and organophosphorus pesticides in different molluscs from Tighra reservoir, Gwalior, India. Bulletin of Environmental Contamination and Toxicology., 95, 332–339.

    Article  CAS  Google Scholar 

  33. Yadav, I. C., Devi, N. L., Syed, J. H., Cheng, Z., Li, J., Zhang, G., & Jones, K. C. (2015). Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Science of the Total Environment, 511, 123–137.

    Article  CAS  Google Scholar 

  34. : European Commission (2010). Guidance document no. 25 on chemical monitoring of sediment and biota under the water framework directive.

  35. Wang, X. P., Yao, T. D., Cong, Z. Y., Yan, X. L., Kang, S. C., & Zhang, Y. (2006). Gradient distribution of persistent organic contaminations along northern slope of central-Himalayas, China. Science of The Total Environment., 372, 193–202.

    Article  CAS  Google Scholar 

  36. Klánová, J., Matykiewiczová, N., Máčka, Z., Prosek, P., Láska, K., & Klán, P. (2008). Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environmental Pollution., 152, 416–423.

    Article  CAS  Google Scholar 

  37. Kantachote, D., Naidu, R., Williams, B., McClure, N., Megharaj, M., & Singleton, I. (2004). DDT resistance and transformation by different microbial strains isolated from DDT-contaminated soils and compost materials. Journal of Chemical Technology and Biotechnology., 79, 632–638.

    Article  CAS  Google Scholar 

  38. Derouiche, A., Sanda, Y. G., & Driss, M. R. (2004). Polychlorinated biphenyls in sediments from Bizerte lagoon, Tunisia. Bulletin of Environmental Contamination and Toxicology., 73, 810–817.

    Article  CAS  Google Scholar 

  39. Ben Ameur, W., Trabelsi, S., El Bedoui, B., & Driss, M. R. (2011). Polychlorinated biphenyls in sediments from Ghar El Melh lagoon, Tunisia. Bulletin of Environmental Contamination and Toxicology., 86, 539–544.

    Article  CAS  Google Scholar 

  40. Tao, S., Li, B., He, X., Liu, W. X., & Shi, Z. (2007). Spatial and temporal variations and possible sources of dichlorophenyl trichloroethane (DDT) and its metabolites in the rivers of Tianjin, China. Chemosphere, 68, 10–16.

    Article  CAS  Google Scholar 

  41. Barhoumi, B., Lemenach, K., Dévier, M. H., El Megdiche, Y., Hammami, B., Ben Ameur, W., Hassine, S. B., Cachot, J., Budzinski, H., & Driss, M. R. (2014). Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environmental science and pollution research international., 21, 6290–6302.

    Article  CAS  Google Scholar 

  42. : Hazardous Substance Data Bank (HSDB) (2003). Available on the Internet through toxnet, sponsored by the National Institute Health library of medicine. Available on the Internet at: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.

  43. Tanabe, S., Prudente, M., Kan-atireklap, S., & Subramanian, A. N. (2000). Mussel watch, marine pollution monitoring of butyltins and organochlorines in coastal waters of Thailand, Philippines and India. Ocean & Coastal Management., 43, 819–839.

    Article  Google Scholar 

  44. Dirtu, A. C., Cernat, R., Dragan, D., Mocanu, R., Van Grieken, R., Neels, H., & Covaci, A. (2006). Organohalogenated pollutants in human serum from Iassy, Romania and their relation with age and gender. Environment International., 32, 797–803.

    Article  CAS  Google Scholar 

  45. Jaraczewska, K., Lulek, J., Covaci, A., Voorspoels, S., Kaluba-Skotarczak, A., Drews, K., & Schepens, P. (2006). Distribution of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers in human umbilical cord serum, maternal serum and milk from Wielkopolska region, Poland. Science of the Total Environment., 372, 20–31.

    Article  CAS  Google Scholar 

  46. : United Nations Environment Programme (2008). UNEP/POPS/DDTBP.

  47. Zhou, R., Zhu, L., & Kong, Q. (2008a). Levels and distribution of organochlorine pesticides in shell fish from Qiantang River, China. Journal of Hazardous Materials., 152, 1192–1200.

    Article  CAS  Google Scholar 

  48. Rylander, C., Sandanger, T. M., & Brustad, M. (2009). Associations between marine food consumption and plasma concentrations of POPs in a Norwegian coastal population. Journal of Environmental Monitoring., 11, 370–376.

    Article  CAS  Google Scholar 

  49. Porta, M., Jariod, M., López, T., Pumarega, J., Puigdomènech, E., Marco, E., Malats, N., Grimalt, J. O., Real, F. X., & PANKRAS II Study Group (2009). In pancreatic ductal adenocarcinoma blood concentrations of some organochlorine compounds and coffee intake are independently associated with KRAS mutations. Environment International. 2009, 35, 1080–1085.

    CAS  Google Scholar 

  50. Channa, K. R., Röllin, H. B., Wilson, K. S., Nøst, T. H., Odland, J. Ø., Naik, I., & Sandanger, T. M. (2012). Prenatal exposure to DDT in malaria endemic region following indoor residual spraying and in non-malaria coastal regions of South Africa. Journal of Environmental Monitoring., 14, 2952–2960.

    Article  CAS  Google Scholar 

  51. Ennaceur, S., & Driss, M. R. (2013). Time course of organochlorine pesticides and polychlorinated biphenyls in breast-feeding mothers throughout the first 10 months of lactation in Tunisia. Environmental Monitoring and Assessment., 185, 1977–1984.

    Article  CAS  Google Scholar 

  52. : National Institute of Heath surveillance, “Exposition de la population française aux substances chimiques de l’environnement, 2013.

  53. Pérez-Maldonado, I. N., Trejo-Acevedo, A., Orta-García, S. T., Ochoa-Martinez, A. C., Varela-Silva, J. A., & Pérez-Vázquez, F. J. (2014). DDT and DDE concentrations in the blood of Mexican children residing in the southeastern region of Mexico. Journal of Environmental Science and Health, Part B., 49, 87–93.

    Article  CAS  Google Scholar 

  54. Teeyapant, P., Ramchiun, S., Polputpisatkul, D., Uttawichai, C., & Parnmen, S. (2014). Serum concentrations of organochlorine pesticides p,pʹ-DDE in adult Thai residents with background levels of exposure. The Journal of Toxicological Sciences., 39, 121–127.

    Article  CAS  Google Scholar 

  55. Di Landa, G., Parrella, L., Avagliano, S., Ansanelli, G., Maiello, E., & Cremisini, C. (2009). Assessment of the potential ecological risk posed by antifouling booster biocides to the marine ecosystem of the Gulf of Napoli (Italy). Water Air and Soil Pollution., 200, 305–321.

    Article  CAS  Google Scholar 

  56. Benejam, L., Benito, J., & Gracia-Berthou, E. (2010). Decreases in condition and fecundity of freshwater fishes in a highly polluted reservoir. Water, Air, & Soil Pollution., 210, 231–242.

    Article  CAS  Google Scholar 

  57. Roberta, B., Silvana, G., Licia, G., Silvia, Q., & Pietro, V. (2010). The role of zooplankton in DDT biomagnifications in a pelagic food web of Lake Maggiore (northern Italy). Environmental science and pollution research international., 17, 1508–1518.

    Article  CAS  Google Scholar 

  58. Deribe, E., Rosseland, B. O., Borgstrøm, R., Salbu, B., Gebremariam, Z., Dadebo, E., Skipperud, L., & Eklo, O. M. (2013). Biomagnification of DDT and its metabolites in four fish species of a tropical lake. Ecotoxicology and Environmental Safety., 95, 10–18.

    Article  CAS  Google Scholar 

  59. Duan, G., Riqing, Y., Xuan, H., Qin, T., Laiguo, C., & Yuping, W. (2014). Bioaccumulation and biomagnification of persistent organic pollutants in Indo-Pacific humpback dolphins (Sousa Chinensis) from the Pearl River Estuary, China. Chemosphere, 114, 106–113.

    Article  CAS  Google Scholar 

  60. Hites, R. A., Foran, J. A., Carpenter, D. O., Hamilton, M. C., Knuth, B. A., & Schwager, S. J. (2004). Global assessment of organic contaminants in farmed salmon. Science, 303, 226–229.

    Article  CAS  Google Scholar 

  61. Hale, S. E., Tomaszewski, J. E., Luthy, R. G., & Werner, D. (2009). Sorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries. Water Research., 43, 4336–4346.

    Article  CAS  Google Scholar 

  62. Ben Ameur, W., El Megdiche, Y., Eljarrat, E., Ben Hassine, S., Badreddine, B., Souad, T., Bèchir, H., Barceló, D., & Driss, M. R. (2013). Organochlorine and organobromine compounds in a benthic fish (Solea Solea) from Bizerte lagoon (northern Tunisia): implications for human exposure. Ecotoxicology and Environmental Safety., 88, 55–64.

    Article  CAS  Google Scholar 

  63. Masmoudi, W., Romdhane, M. S., Khériji, S., & El Cafsi, M. (2007). Polychlorinated biphenyl residues in the gold engrey mullet (Liza aurata) from Tunis Bay, Mediterranean Sea (Tunisia). Food Chemistry., 105, 72–76.

    Article  CAS  Google Scholar 

  64. Gerber, R., Smit, N. J., Van Vuren, J. H., Nakayama, S. M., Yohannes, Y. B., Ikenaka, Y., Ishizuka, M., & Wepener, V. (2016). Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area. Science of The Total Environment., 550, 522–533.

    Article  CAS  Google Scholar 

  65. Binelli, A., & Provini, A. (2004). Risk for human health of some POPs due to fish from Lake Iseo. Ecotoxicology and Environmental Safety, 58, 139–145.

    Article  CAS  Google Scholar 

  66. Bettinetti, R., Croce, V., & Galassi, S. (2005). Ecological risk assessment for the recent case of DDT pollution in Lake Maggiore (northern Italy). Water, Air, & Soil Pollution., 152, 385–399.

    Article  CAS  Google Scholar 

  67. Yang, N., Matsuda, M., Kawano, M., & Wakimoto, T. (2006). PCBs and organochlorine pesticides (OCPs) in edible fish and shell fish from China. Chemosphere, 63, 1342–1352.

    Article  CAS  Google Scholar 

  68. Zhou, R., Zhu, L., Chen, Y., & Kong, Q. (2008b). Concentrations 863 and characteristics of organochlorine pesticides in aquatic biota from Qiantang River in China. Environmental Pollution, 151, 190–199.

    Article  CAS  Google Scholar 

  69. Callahan, M. A., Slimak, M. W., Gabel, N. W., May, I. P., Flowler, C. F., Freed, J. R., Jennsings, P., Durfee, R. L., Whitmore, F. C., Maestri, B., Mabey, W. R., Buford, R. H., & Gould, C. (1979). In water related environmental fate of 129 priority pollutants. U.S. Environmental Protection Agency. EPA-440/4–79-029a. Washington, D.C.: Office of Water and Waste Management.

    Google Scholar 

  70. Metcalf, R. L. (1973). Century of DDT. Journal of Agricultural and Food Chemistry, 21, 511–519.

    Article  CAS  Google Scholar 

  71. Morgan, D. P., & Roan, C. C. (1971). Absorption, storage, and metabolic conversion of ingested DDT and DDT metabolites in man. Archives of Environmental Health., 22, 301–308.

    Article  CAS  Google Scholar 

  72. Naso, B., Perrone, D., Ferrante, M. C., Bilancione, M., & Lucisano, A. (2005). Persistent organic pollutants in edible marine species from the Gulf of Naples, southern Italy. Science of the Total Environment., 343, 83–95.

    Article  CAS  Google Scholar 

  73. Covaci, A., Gheorghe, A., Hulea, O., & Schepens, P. (2006). Levels and distribution of organochlorine pesticides, polychlorinated biphenyls and polybrominateddiphenyl ethers in sediments and biota from the Danube Delta. Romania. Environmental Pollution., 140, 136–149.

    Article  CAS  Google Scholar 

  74. Roche, H., Vollaire, Y., Persic, A., Buet, A., Oliveira-Ribeiro, C., Coulet, E., Banas, D., & Ramade, F. (2009). Organochlorines in the Vaccarès lagoon trophic web (biosphere reserve of Camargue, France). Environmental Pollution, 157, 2493–2506.

    Article  CAS  Google Scholar 

  75. Alcock, R. E., Behnisch, P. A., Jones, K. C., & Hagenmaier, H. D. (1998). Dioxin-like PCBs in the environment–human exposure and the significance of sources. Chemosphere, 37, 1457–1472.

    Article  CAS  Google Scholar 

  76. Safe, S. H. (1998). Development validation and problems with the toxic equivalency factor. Approach of risk assessment of dioxins and related compounds. Journal of Animal Science, 76, 134–141.

    Article  CAS  Google Scholar 

  77. Chen, P. H., Luo, M. L., Wong, D. K., & Chen, C. J. (1982). Comparative rates of elimination of some individual PCBs from the blood of PCB poisoned patients in Taiwan. Food and Chemical Toxicology., 20, 417–425.

    Article  CAS  Google Scholar 

  78. Nordin, R. B., Araki, S., Sato, H., Yokoyama, K., Wan Muda, W. A., & Win Kyi, D. (2002). Effects of safety behaviours with pesticide use on occurrence of acute symptoms in male and female tobacco growing malaysian farmers. Industrial Health., 40, 182–190.

    Article  CAS  Google Scholar 

  79. Tanabe, S., Gondaira, F., Subramanian, A., Ramesh, A., Mohan, D., Kumaran, P., Venugopalan, V. K., & Tatsukawa, R. (1990). Specific pattern of persistent organochlorine residues in human breastmilk from South India. Journal of Agricultural and Food Chemistry., 18, 899–903.

    Article  Google Scholar 

  80. Kiviranta, H., Vartiainen, T., & Tuomisto, J. (2002). Polychlorinated dibenzo-p-dioxins,dibenzofurans, and biphenyls in fishermen in Finland. Environmental Health Perspectives., 110, 355–361.

    Article  CAS  Google Scholar 

  81. Fitzgerald, E. F., Hwang, S. A., Langguth, K., Cayo, M., Yang, B. Z., Bush, B., Worswick, P., & Lauzon, T. (2004). Fish consumption and other environmental exposures and their associations with serum PCB concentrations among Mohawk women at a kwesasne. Environmental Research., 94, 160–170.

    Article  CAS  Google Scholar 

  82. Dallaire, F., Dewailly, E., Muckle, G., Vezina, C., Jacobson, S. W., Jacobson, J. L., & Ayotte, P. (2004). Acute infections and environmental exposure to organochlorines in Inuit infants from Nunavik. Environmental Health Perspectives., 112, 1359–1363.

    Article  CAS  Google Scholar 

  83. Turusov, V., Rakitsky, V., & Tomatis, L. (2002). Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risk. Environmental Health Perspectives., 110, 125–128.

    Article  CAS  Google Scholar 

  84. Falck Jr., F., Ricci Jr., A., & Wolff, M. S. (1992). Pesticides and polychlorinated biphenyls in human breast lipids and their relations to breast cancer. Archives of Environmental Health., 47, 143–146.

    Google Scholar 

  85. Amaral Mendes, J. J. (2002). The endocrine disrupters: a major medical challenge. Food and Chemical Toxicology, 40, 781–788.

    Article  CAS  Google Scholar 

  86. Cohn, B. A., Cirillo, P. M., & Christianson, R. E. (2010). Prenatal DDT exposure and testicular cancer: a nested case-control study. Archives of Environmental Health., 65, 127–134.

    Article  CAS  Google Scholar 

  87. Tomatis, L., Turusov, V., Day, N., & Charles, R. T. (1975). Studies on the carcinogenicity of DDT. Gann Monograph on Cancer Research., 17, 219–241.

    CAS  Google Scholar 

  88. Büsser, M. T., & Lutz, W. K. (1987). Stimulation of DNA synthesis in rat and mouse liver by various tumor promoters. Carcinogenesis, 8, 1433–1437.

    Article  Google Scholar 

  89. Iscan, M., Coban, T., Cok, I., Bulbul, D., Eke, B. C., & Burgaz, S. (2002). The organochlorine pesticide residues and antioxidant enzyme activities in human breast tumors: is there any association. Breast Cancer Research and Treatment., 72, 173–182.

    Article  CAS  Google Scholar 

  90. Ennaceur, S., Driss, R., & Ricard, M. (2008). Genotoxicity of the organochlorine pesticides 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and hexachlorobenzene (HCB) in cultured human lymphocytes. Chemosphere, 71, 1335–1339.

    Article  CAS  Google Scholar 

  91. Kang, K. S., Wilson, M. R., Hayashi, T., Chang, C. C., & Trosko, J. E. (1996). Inhibition of gap junctional intercellular communication in normal human breast epithelial cells after treatment with pesticides, PCBs, and PBBs, alone or in mixtures. Environmental Health Perspective, 104, 192–200.

    CAS  Google Scholar 

  92. : Environmental Protection Agency (EPA) (1980). Washington DC: United States Environmental Protection Agency. 440/5–80-038.

  93. : Johnson, W.W., and Finley, M.T. (1980). Handbook of acute toxicity of chemicals to fish and aquatic invertebrates: summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965–78 (pp. 24–25). Resource Publication, 137, United States Department of the Interior, Fish and Wildlife Service, Washington, D.C.

  94. Xiao, P., Mori, T., & Kame, I. (2011). A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation, 22, 859–867.

    Article  CAS  Google Scholar 

  95. Quensen, J. F., Mueller, S. A., Jain, M. K., & Tiedje, J. M. (1998). Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science, 280, 722–724.

    Article  CAS  Google Scholar 

  96. Thomas, J. E., Ou, L. T., & All-Agely, A. (2008). DDE remediation and degradation. Reviews of Environmental Contamination and Toxicology., 194, 55–69.

    CAS  Google Scholar 

  97. Wedemeyer, G. (1976). Dechlorination of 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane by Aerobacter aerogenes. Journal of Applied Microbiology, 15, 569–574.

    Google Scholar 

  98. Bumpus, J. A., & Aust, S. D. (1987). Biodegradation of DDT 1,1,1- dichloro-2,2-bis-4-(chlorophenyl) ethane by the white rot fungus Phanerochaete crysosporium. Applied and Environmental Microbiology., 53, 2001–2008.

    CAS  Google Scholar 

  99. : Johnsen, R.E. (1967). In Gunther, F.A., Gunther, J. D. (Eds.), DDT metabolism in microbial systems, vol. 61: the series residue reviews (pp. 1–28).

  100. Lal, R., & Saxena, D. M. (1982). Accumulation, metabolism and effects of organochlorine insecticides on microorganisms. Microbiological Reviews., 46, 95–127.

    CAS  Google Scholar 

  101. Sahasrabudhe, S. R., & Modi, V. V. (1987). Microbial degradation of chlorinated aromatic compounds. Microbiological Sciences., 4, 300–303.

    CAS  Google Scholar 

  102. Barragán-Huerta, B. E., Costa-Pérez, C., Peralta-Cruz, J., Barrera-Cortés, J., Esparza-García, F., & Rodríguez-Vázquez, R. (2007). Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. International Biodeterioration & Biodegradation., 59, 239–244.

    Article  CAS  Google Scholar 

  103. Sonkong, K., Prasertsan, P., & Sobhon, V. (2008). Screening and identification of p, p¢-DDT degrading soil isolates. Journal of Science and Technology., 30, 103–110.

    Google Scholar 

  104. Huang, Y., & Wang, J. (2013). Degradation and mineralization of DDT by the ectomycorrhizal fungi, Xerocomus chrysenteron. Chemosphere, 92, 760–764.

    Article  CAS  Google Scholar 

  105. Qu, J., Xu, Y., Ai, G. M., Liu, Y., & Liu, Z. P. (2015). Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. Journal of Environmental Management., 161, 350–357.

    Article  CAS  Google Scholar 

  106. Pan, X., Lin, D., Zheng, Y., Zhang, Q., Yin, Y., Cai, L., Fang, H., & Yu, Y. (2016). Biodegradation of DDT by Stenotrophomonas sp. DDT-1: characterization and genome functional analysis. Scientific Reports, 6, 21332.

    Article  CAS  Google Scholar 

  107. Kuhad, R. C., Johri, A. K., Singh, A., & Ward, O. P. (2004). Bioremediation of pesticide-contaminated soils. Applied Bioremediation and Phytoremediation., 1, 35–54.

    Article  CAS  Google Scholar 

  108. Cao, F., Liu, T. X., Wu, C. Y., Li, F. B., Li, X. M., Yu, H. Y., Tong, H., & Chen, M. J. (2012). Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). Journal of Agricultural and Food Chemistry., 60, 11238–11244.

    Article  CAS  Google Scholar 

  109. Nadeau, L. J., Mann, F. M., Breen, A., & Sayler, G. S. (1994). Aerobic degradation of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5. Applied and Environmental Microbiology., 60, 51–55.

    CAS  Google Scholar 

  110. Patil, K. C., Matsumura, F., & Boush, G. M. (1970). Degradation of endrin, aldrin, and DDT by soil microorganisms. Journal of Applied Microbiology., 19, 879–881.

    CAS  Google Scholar 

  111. Yim, Y. J., Seo, J., Kang, S. I., Ahn, J. H., & Hur, H. G. (2008). Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions. Archives of Environmental Contamination and Toxicology., 54, 406–411.

    Article  CAS  Google Scholar 

  112. Aislabie, J. M., Richards, N. K., & Boul, H. L. (1997). Microbial degradation of DDT and its residues: a review. New Zealand Journal of Agricultural Research., 40, 269–282.

    Article  CAS  Google Scholar 

  113. Focht, D. D., & Alexander, M. (1970). Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. Science, 170, 91–92.

    Article  CAS  Google Scholar 

  114. Focht, D. D., & Alexander, M. (1971). DDT metabolites and analogs: ring fission by Hydrogenomonas. Journal of Agricultural and Food Chemistry., 19, 20–22.

    Article  CAS  Google Scholar 

  115. Hay, A. G., & Focht, D. D. (2000). Transformation of 1,1-dichloro-2,2-(4-chlorophenyl)ethane (DDD) by Ralstonia eutropha strain A5. FEMS Microbiology Ecology, 31, 249–253.

    Article  CAS  Google Scholar 

  116. Hay, A. G., & Focht, D. D. (1998). Cometabolism of 1,1-dichloro-2,2-bis(4- chlorophenyl)ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Applied and Environmental Microbiology., 64, 2141–2146.

    CAS  Google Scholar 

  117. Santacruz, G., Bandala, E. R., & Torres, L. G. (2005). Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens. Journal of Environmental Science and Health, Part B., 40, 571–583.

    Article  CAS  Google Scholar 

  118. Pfaender, F. K., & Alexander, M. (1972). Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. Journal of Agricultural and Food Chemistry., 20, 842–846.

    Article  CAS  Google Scholar 

  119. Fang, H., Dong, B., Yan, H., Tang, F., & Yu, Y. (2010). Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. Journal Hazardous Material., 184, 281–289.

    Article  CAS  Google Scholar 

  120. Wang, G., Zhang, J., Wang, L., Liang, B., Chen, K., Li, S., & Jiang, J. (2010). Co-metabolism of DDT by the newly isolated bacterium Pseudoxanthomonas sp. Brazilian Journal of Microbiology., 41, 341–338.

    Google Scholar 

  121. Bajaj, A., Mayilraj, S., Mudiam, M. K., Patel, D. K., & Manickam, N. (2014). Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bioresource Technology., 167, 398–406.

    Article  CAS  Google Scholar 

  122. Bidlan, R., & Manonmani, H. K. (2002). Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochemestry., 38, 49–56.

    Article  CAS  Google Scholar 

  123. Mwangi, K., Boga, H. I., Muigai, A. W., Kiiyuikia, C., & Tsanuo, M. K. (2010). Degradation of dichlorodiphenyltrichloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. African Journal of Microbiology Research., 4, 185–196.

    CAS  Google Scholar 

  124. Li, F. B., Li, X. M., Zhou, S. G., Zhuang, L., Cao, F., Huang, D. Y., Xu, W., Liu, T. X., & Feng, C. H. (2010). Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution., 158, 1733–1740.

    Article  CAS  Google Scholar 

  125. Subba-Rhao, R. V., & Alexander, M. (1985). Products formed from analogs of 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) metabolites by Pseudomonas putida. Applied and Environmental Microbiology., 33, 101–108.

    Google Scholar 

  126. Ortega, S. N., Nitschke, M., Mouad, A. M., Landgraf, M. D., Rezende, M. O., Seleghim, M. H., Sette, L. D., & Porto, A. L. (2011). Isolation of Brazilian marine fungi capable of growing on DDT pesticide. Biodegradation, 22, 43–50.

    Article  CAS  Google Scholar 

  127. Huang, Y., Zhao, X., & Luan, S. (2007). Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Science of the Total Environment., 385, 235–241.

    Article  CAS  Google Scholar 

  128. Juhasz, A. L., & Naidu, R. (1999). Apparent degradation of 1,1,1-trichloro-2,2,-bis (p-chlorophenyl) ethane (DDT) by a Cladosporium sp. Biotechnology Letters., 21, 991–995.

    Article  CAS  Google Scholar 

  129. Purnomo, A. S., Koyama, F., Mori, T., & Kondo, R. (2010a). DDT degradation potential of cattle manure compost. Chemosphere, 80, 619–624.

    Article  CAS  Google Scholar 

  130. Gita, K., & Anupriya, K. (2010). Simultaneous degradation of mixed insecticides by mixed fungal culture isolated from sewage sludge. Journal of Agricultural and Food Chemistry., 58, 11852–11856.

    Article  CAS  Google Scholar 

  131. Mitra, J., Mukherjee, P. K., Kale, S. P., & Murthy, N. B. (2001). Bioremediation of DDT in soil by genetically improved strains of soil fungus Fusarium solani. Biodegradation, 12, 235–245.

    Article  CAS  Google Scholar 

  132. Wu, N., Zhang, S., Huang, H., Shan, X., Christie, P., & Wang, Y. (2008). DDT uptake by Arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environmental Pollution., 151, 569–575.

    Article  CAS  Google Scholar 

  133. Thomas, J. E., & Gohil, H. (2011). Microcosm studies on the degradation of o,pʹ- and p,pʹ-DDT, DDE, and DDD in a muck soil. World Journal of Microbiology and Biotechnology., 27, 619–625.

    Article  CAS  Google Scholar 

  134. Guenzi, W. D., & Beard, W. E. (1967). Anaerobic biodegradation of DDT to DDD in soil. Science, 156, 11161–11167.

    Article  Google Scholar 

  135. Kamanavalli, C. M., & Ninnekar, H. (2004). Biodegradation of DDT by a Pseudomonas species. Current Microbiology., 48, 10–13.

    Article  CAS  Google Scholar 

  136. Xie, H., Zhu, L., Xu, Q., Wang, J., Liu, W., Jiang, J., & Meng, Y. (2011). Isolation and degradation ability of the DDT-degrading bacterial strain KK. Environmental Earth Sciences., 62, 93–99.

    Article  CAS  Google Scholar 

  137. Oprea, S. (2010). Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure. Polymer Degradation and Stability., 95, 2396–2404.

    Article  CAS  Google Scholar 

  138. Bumpus, J. A., Kakar, S. N., & Coleman, R. D. (1993). Fungal degradation of organophosphorus insecticides. Applied Biochemistry and Biotechnology., 40, 715–726.

    Article  Google Scholar 

  139. Purnomo, A. S., Mori, T., & Kondo, R. (2010c). Involvement of Fenton reaction in DDT degradation by brown-rot fungi. International Biodeterioration & Biodegradation., 64, 560–565.

    Article  CAS  Google Scholar 

  140. : Häggblom, M.M., and Bossert, I.D. (2003). Halogenated organic compound a global perspective. Microbial Process and Environmental Application. Boston: Kluwer.

  141. Nakamura, M., Hachiya, T., Saito, Y., Sato, K., & Sakakibara, Y. (2012). An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds. BMC Bioinformatics, 13, 1–12.

    Article  CAS  Google Scholar 

  142. : Feng, J. (2014). Biocatalysis/biodegradation database. University of Minnesota.

  143. Smidt, H., & De Vos, W. M. (2004). Anaerobic microbial dehalogenation. Annual Review of Microbiology., 58, 43–73.

    Article  CAS  Google Scholar 

  144. Zanaroli, G., Negroni, A., Häggblom, M. M., & Fava, F. (2015). (2015). Microbial dehalogenation of organohalides in marine and estuarine environments. Current Opinion in Biotechnology., 33, 287–295.

    Article  CAS  Google Scholar 

  145. Purnomo, A. S., Mori, T., Kamei, I., & Kondo, R. (2011). Bioremediation of DDT contaminated soil using brown-rot fungi. International Biodeterioration & Biodegradation., 65, 921–930.

    Article  CAS  Google Scholar 

  146. Rangachary, L., Rajagopalan, R. P., Singh, T. M., & Krishnan, M. H. (2012). Purification and characterization of DDT-dehydrohalogenase from Pseudomonas putida T5. Preparative Biochemistry and Biotechnology., 42, 60–76.

    Article  CAS  Google Scholar 

  147. : Smith, S.E., and Read, D.J. (1997). Mycorrhizal symbiosis. Vesicular-arbuscular Mycorrhizas (9–160). London: Academic Press.

  148. Fang, H., Cai, L., Yang, Y., Ju, F., Li, X., Yu, Y., & Zhang, T. (2014). Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in fresh water and marine sediments. Science of the Total Environment., 47, 983–992.

    Article  CAS  Google Scholar 

  149. DeLorenzo, M. E., Scott, G. I., & Ross, P. E. (2001). Toxicity of pesticides to aquatic microorganisms: a review. Environmental Toxicology and Chemistry., 20, 84–98.

    Article  CAS  Google Scholar 

  150. Lopez, L., Pozo, C., Rodelaz, B., Calvo, C., Juarez, B., Martinez-Toledo, M. V., & Gonzalez-Lopez, J. (2005). Identification of bacteria isolated from an oligotrophic lake with pesticide removal capacities. Ecotoxicology, 14, 299–312.

    Article  CAS  Google Scholar 

  151. Bunge, M., Kähkönen, M. A., Rämisch, W., Opel, M., Vogler, S., Walkow, F., Salkinoja-Salonen, M., & Lechner, U. (2007). Biological activity in a heavily organo halogen-contaminated river sediment. Environmental Science and Pollution Research., 14, 1–8.

    Article  CAS  Google Scholar 

  152. Boul, H. L. (1996). Effects of soil moisture on the fate of radio labelled DDT and DDE in vitro. Chemosphere, 32, 855–866.

    Article  CAS  Google Scholar 

  153. Corona-Cruz, A., Gold-Bouchot, G., Gutierrez-Rojas, M., Monroy-Hermosillo, O., & Favela, E. (1999). Anaerobic-aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils. Bulletin of Environmental Contamination and Toxicology., 63, 219–225.

    Article  CAS  Google Scholar 

  154. Baczynski, T. P., Pleissner, D., & Grotenhuis, T. (2010b). Anaerobic biodegradation of organochlorine pesticides in contaminated soil–significance of temperature and availability. Chemosphere, 78, 22–28.

    Article  CAS  Google Scholar 

  155. Purnomo, A. S., Mori, T., Kamei, I., Nishii, T., & Kondo, R. (2010b). Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. International Biodeterioration & Biodegradation., 64, 397–402.

    Article  CAS  Google Scholar 

  156. Zhao, Y., & Yi, X. (2010). Effects of soil oxygen condition and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi. International Journal of Environmental Research and Public Health., 7, 1612–1621.

    Article  CAS  Google Scholar 

  157. Baczynski, T. (2012). Influence of process parameters on anaerobic biodegradation of DDT in contaminated soil preliminary lab-scale study. Part I. Surfactant and initial contamination level. Environment Protection Engineering., 38, 113–125.

    CAS  Google Scholar 

  158. Fan, B., Zhao, Y., Mo, G., Ma, W., & Wu, J. (2013). Co-remediation of DDT-contaminated soil using white rot fungi and laccase extract from white rot fungus. Journal of Soils and Sediments., 13, 1232–1245.

    Article  CAS  Google Scholar 

  159. Ortíz, I., Velasco, A., Le Borgne, S., & Revah, S. (2013). Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates. Biodegradation, 24, 215–225.

    Article  CAS  Google Scholar 

  160. Schauer, R., Bienhold, C., Ramette, A., & Harder, J. (2010). Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. The International Society for Microbial Ecology Journal., 4, 159–179.

    CAS  Google Scholar 

  161. Gohil, H., Ogram, A., & Thomas, J. (2014). Stimulation of anaerobic biodegradation of DDT and its metabolites in a muck soil: laboratory microcosm and mesocosm studies. Biodegradation, 25, 633–642.

    Article  CAS  Google Scholar 

  162. Liang, Q., Lei, M., Chen, T., Yang, J., Wan, X., & Yang, S. (2014). Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil. Journal of Environmental Sciences., 26, 1673–1680.

    Article  CAS  Google Scholar 

  163. Betancur-Corredor, B., Pino, N. J., Cardona, S., & Peñuela, G. A. (2015). Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil. Journal of Environmental Sciences., 28, 101–109.

    Article  Google Scholar 

  164. Sun, G., Zhang, X., Hu, Q., Zhang, H., Zhang, D., & Li, G. (2015). Biodegradation of dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) with plant and nutrients and their effects on the microbial ecological kinetics. Microbial Ecology., 69, 281–292.

    Article  CAS  Google Scholar 

  165. Yuechun, Z., Xiaoyun, Y., Minghua, L., Lu, L., & Weijuan, M. A. (2010). Biodegradation kinetics of DDT in soil under different environmental conditions by laccase extract from white rot fungi. Chinese Journal of Chemical Engineering., 18, 486–492.

    Article  Google Scholar 

  166. Bell, T. H., Yergeau, E., Juck, F. D., Whyte, G. L., & Greer, W. C. (2013). Alteration of microbial community structure affects diesel biodegradation in an Arctic soil. FEMS Microbiology Ecology., 85, 51–61.

    Article  Google Scholar 

  167. Huashou, L., Weifeng, L., & Chuxia, L. (2011). Fishpond sediment-borne DDTs and HCHs in the Pearl River Delta: characteristics, environmental risk and fate following the use of the sediment as plant growth media. Journal of Hazardous Materials., 186, 1474–1480.

    Article  CAS  Google Scholar 

  168. Beunink, J., & Rehm, H. J. (1988). Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Applied Microbiologyand Biotechnology., 29, 72–80.

    Article  CAS  Google Scholar 

  169. Wright, A. L., & Reddy, K. R. (2001). Heterotrophic microbial activity in northern Everglades wetland soils. Soil Science Society of America Journal., 65, 1856–1864.

    Article  CAS  Google Scholar 

  170. El Mamouni, R., Jacquet, R., Gerin, P., & Agathos, S. N. (2002). Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene and nickel: laboratory- and pilot-scale study. Water Science & Technology., 45, 49–54.

    CAS  Google Scholar 

  171. Anderson, B. S., Hunt, J. W., Phillips, B. M., Stoelting, M., Becker, J., Fairey, R., Puckett, H. M., Stephenson, M., Tjeerdema, R., & Martin, M. (2000). Ecotoxicologic change at a remediated superfund site in San Francisco, California. USA. Environmental Toxicology and Chemistry., 19, 879–887.

    Article  CAS  Google Scholar 

  172. : Sasek, V., Glaser, J.A., & Baveye, P. (2003). In Earth and environmental Science, vol. 19: The utilization of bioremediation to reduce soil contamination: problems and solutions (pp. 1–35). Springer Science & Business Media, ed.

  173. : West Swiss Riders Chapter (WSRC) (2003). The use of enhanced bioremediation at the Savannah River site to remediate pesticides and PCBs.

  174. : Environmental Protection Agency (EPA) (2002). Technology news and trends, full-scale bioremediation of organic explosive contaminated soil. EPA 542-N-02-003.

  175. Poland, J. S., Riddle, M. J., & Zeeb, B. A. (2003). Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Record., 39, 369–383.

    Article  Google Scholar 

  176. Fewson, C. A. (1988). Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance. Trends in Biotechnology., 6, 148–153.

    Article  CAS  Google Scholar 

  177. : Bollag, J.M., & Liu, S.Y. (1990). Biological transformation processes of pesticides. Pesticides in the soil environment. Madison, Soil. Soil Science Society of America, 169–211.

  178. Reid, B. J., Jones, K. C., & Semple, K. T. (2000). Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environmental Pollution., 108, 103–112.

    Article  CAS  Google Scholar 

  179. Wang, S., & Mulligan, C. N. (2004). An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 2004, 57, 1079–1089.

    Google Scholar 

  180. Kile, D. E., & Chiou, C. T. (1989). Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environmental Science & Technology., 23, 832–838.

    Article  CAS  Google Scholar 

  181. Kile, D. E., & Chiou, C. T. (1990). Effect of some petroleum sulfonate surfactants on the apparent water solubility of organic compounds. Environmental Science & Technology., 24, 205–208.

    Article  CAS  Google Scholar 

  182. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactant enhanced remediation of contaminated soil: a review. Engineering Geology., 60, 371–380.

    Article  Google Scholar 

  183. Mulligan, C. (2005). Environmental applications for biosurfactants. Environmental Pollution., 133, 183–198.

    Article  CAS  Google Scholar 

  184. Kim, H. S., & Weber, W. J. (2003). Preferential surfactant utilization by a PAH-degrading strain: effects on micellar solubilization phenomena. Environmental Science & Technology., 37, 3574–3580.

    Article  CAS  Google Scholar 

  185. Zhu, H., & Aitken, M. D. (2010). Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environmental Science & Technology., 44, 7260–7265.

    Article  CAS  Google Scholar 

  186. Kommalapati, R., Valsaraj, K., Constant, W., & Roy, D. (1997). Aqueous solubility enhancement and desorption of hexachlorobenzene from soil using a plant based surfactant. Water Research., 31, 2161–2170.

    Article  CAS  Google Scholar 

  187. Zhao, Z., Selvam, A., & Wong, J. W. (2011). Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03on the biodegradation of phenanthrene in bioslurry system. Journal of Hazardous Materials., 190, 345–350.

    Article  CAS  Google Scholar 

  188. Parfitt, R. L., Whitton, J. S., & Susarla, S. (1995). Removal of DDT residues from soil by leaching with surfactants. Communications In Soil Science And Plant Analysis., 26, 2231–2241.

    Article  CAS  Google Scholar 

  189. Smith, E., Smith, R., & Naidu Juhasz, A. L. (2004). Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water, Air, & Soil Pollution., 151, 71–86.

    Article  CAS  Google Scholar 

  190. Baczynski, T. P., & Pleissner, D. (2010a). Bioremediation of chlorinated pesticide-contaminated soil using anaerobic sludges and surfactant addition. Journal of Environmental Science and Health, Part B., 45, 82–88.

    Article  CAS  Google Scholar 

  191. Boussahel, R., Irinislimane, H., Harik, D., & Moussaoui, K. M. (2009). Adsorption, kinetics, and equilibrium studies on removal of 4,4′ DDT from aqueous solutions using low-cost adsorbents. Chemical Engineering Communications., 196, 1547–1558.

    Article  CAS  Google Scholar 

  192. You, G., Sayles, G. D., Kupferle, M. J., Kim, I. S., & Bishop, P. L. (1996). Anaerobic DDT biotransformation: enhancement by application of surfactants and low oxidation reduction potential. Chemosphere, 32, 2269–2284.

    Article  CAS  Google Scholar 

  193. Walters, G. W., & Aitken, M. D. (2001). Surfactant-enhanced solubilization and anaerobic biodegradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (DDT) in contaminated soil. Water Environment Research., 73, 15–23.

    Article  CAS  Google Scholar 

  194. White, J. C., Mattina, M. I., Lee, W. Y., Eitzer, B. D., & Iannucci-Berger, W. (2003). Role of organic acids in enhancing the desorption and uptake of weathered p,pʹ-DDE by Cucurbita pepo. Environmental Pollution., 124, 71–80.

    Article  CAS  Google Scholar 

  195. Jabbar, M. A., Shimakoshi, H., & Hisaeda, Y. (2007). Enhanced reactivity and hydrophobic vitamin B12 towards the dechlorination of DDT in ionic liquid. Chemical Communications., 16, 1653–1655.

    Article  CAS  Google Scholar 

  196. Thangavadivel, K., Megharaj, J., Smart, R., Lesniewski, P. J., Bates, D., & Naidu, R. (2011). Ultrasonic enhanced desorption of DDT from contaminated soils. Water, Air, & Soil Pollution., 217, 115–125.

    Article  CAS  Google Scholar 

  197. Zheng, G., Zhao, Z., & Wong, J. W. (2011). Role of non-ionic surfactants and plant oils on the solubilization of organochlorine pesticides by oil-in-water microemulsions. Environmental Technology., 32, 269–279.

    Article  CAS  Google Scholar 

  198. Zheng, G., Selvam, A., & Wong, J. W. (2012). Oil-in-water microemulsions enhances the biodegradation of DDT by Phanerochaete chrysosporium. Bioresource Technology., 126, 397–403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Thouand.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, A., Cregut, M., Abbes, C. et al. The Environmental Issues of DDT Pollution and Bioremediation: a Multidisciplinary Review. Appl Biochem Biotechnol 181, 309–339 (2017). https://doi.org/10.1007/s12010-016-2214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2214-5

Keywords

Navigation