Skip to main content

Advertisement

Log in

Harvesting Microalgae with Different Sources of Starch-Based Cationic Flocculants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, starches obtained from wheat, potato, and corn were used to synthesize cationic starches (CS), and the flocculation efficiency of these materials was tested with Chlorella pyrenoidosa and Botryococcus braunii cultures under different conditions. Our results indicated that these three CS had differing degrees of substitution following identical synthesis conditions. The various CS functioned similarly in this study, and the desired harmless flocculation efficiency was obtained at low dosages, with CS to microalgal biomass ratios of approximately 89 and 119 mg g−1 for C. pyrenoidosa and B. braunii, respectively. Impressive harmless harvesting efficiencies were obtained at lower dosages with respect to appropriate stirring time before the settling, with ratios ranging from 58 to 78 mg g−1 for C. pyrenoidosa cultures. The cost of microalgae harvesting can be cut dramatically by choosing cheaper starches prior to the synthetic CS and by applying suitable flocculation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  CAS  Google Scholar 

  2. Brentner, L. B., Eckelman, M. J., & Zimmerman, J. B. (2011). Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environmental Science & Technology, 45, 7060–7067.

    Article  CAS  Google Scholar 

  3. Dencs, J., Nos, G., Dencs, B., & Marton, G. (2004). Investigation of solid-phase starch modification reactions. Chemical Engineering Research and Design, 82, 215–219.

    Article  CAS  Google Scholar 

  4. Feng, Y., Li, C., & Zhang, D. (2011). Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology, 102, 101–105.

    Article  CAS  Google Scholar 

  5. Gerde, J. A., Yao, L., Lio, J., Wen, Z., & Wang, T. (2014). Microalgae flocculation: impact of flocculant type, algae species and cell concentration. Algal Research, 3, 30–35.

    Article  Google Scholar 

  6. Ghimici, L., & Nichifor, M. (2010). Novel biodegradable flocculanting agents based on cationic amphiphilic polysaccharides. Bioresource Technology, 101, 8549–8554.

    Article  CAS  Google Scholar 

  7. Gong, Y., & Jiang, M. (2011). Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters, 33, 1269–1284.

    Article  CAS  Google Scholar 

  8. Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology, 36, 269–274.

    Article  CAS  Google Scholar 

  9. Hansel, P. A., Riefler, R. G., & Stuart, B. J. (2014). Efficient flocculation of microalgae for biomass production using cationic starch. Algal Research, 5, 133–139.

    Article  Google Scholar 

  10. Heasman, M., Diemar, J., O’connor, W., Sushames, T., & Foulkes, L. (2000). Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquaculture Research, 31, 637–659.

    Article  Google Scholar 

  11. Hudson Jr, H. E. and Wagner, E. G. (1981) Conduct and uses of jar tests. Journal (American Water Works Association), 218–223.

  12. Kavaliauskaite, R., Klimaviciute, R., & Zemaitaitis, A. (2008). Factors influencing production of cationic starches. Carbohydrate Polymers, 73, 665–675.

    Article  CAS  Google Scholar 

  13. Kuo, W.-Y., & Lai, H.-M. (2009). Effects of reaction conditions on the physicochemical properties of cationic starch studied by RSM. Carbohydrate Polymers, 75, 627–635.

    Article  CAS  Google Scholar 

  14. Lan, S., Wu, L., Zhang, D., & Hu, C. (2015). Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. Bioresource Technology, 182, 144–150.

    Article  CAS  Google Scholar 

  15. Lee, A. K., Lewis, D. M., & Ashman, P. J. (2009). Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology, 21, 559–567.

    Article  CAS  Google Scholar 

  16. Lee, Y.-C., Lee, K., & Oh, Y.-K. (2015). Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresource Technology, 184, 63–72.

    Article  CAS  Google Scholar 

  17. Letelier-Gordo, C. O., Holdt, S. L., De Francisci, D., Karakashev, D. B., & Angelidaki, I. (2014). Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Bioresource Technology, 167, 214–218.

    Article  CAS  Google Scholar 

  18. Li, C., & Ju, L.-K. (2014). Conversion of wastewater organics into biodiesel feedstock through the predator-prey interactions between phagotrophic microalgae and bacteria. RSC Advances, 4, 44026–44029.

    Article  CAS  Google Scholar 

  19. Li, C., Xiao, S., & Ju, L.-K. (2016). Cultivation of phagotrophic algae with waste activated sludge as a fast approach to reclaim waste organics. Water Research, 91, 195–202.

    Article  CAS  Google Scholar 

  20. Li, L. (2012) Synthesis and characterization of starch-based cationic flocculants for harvesting microalgae. UNIVERSITY OF MINNESOTA.

  21. Liu, Z.-Y., Wang, G.-C., & Zhou, B.-C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99, 4717–4722.

    Article  CAS  Google Scholar 

  22. Moon, J.-W., Rawn, C. J., Rondinone, A. J., Love, L. J., Roh, Y., Everett, S. M., Lauf, R. J., & Phelps, T. J. (2010). Large-scale production of magnetic nanoparticles using bacterial fermentation. Journal of Industrial Microbiology & Biotechnology, 37, 1023–1031.

    Article  CAS  Google Scholar 

  23. Pal, S., Mal, D., & Singh, R. (2005). Cationic starch: an effective flocculating agent. Carbohydrate Polymers, 59, 417–423.

    Article  CAS  Google Scholar 

  24. Praveenkumar, R., Kim, B., Choi, E., Lee, K., Park, J.-Y., Lee, J.-S., Lee, Y.-C., & Oh, Y.-K. (2014). Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresource Technology, 171, 500–505.

    Article  CAS  Google Scholar 

  25. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., & Smith, A. G. (2010). Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 21, 277–286.

    Article  CAS  Google Scholar 

  26. Show, K.-Y., & Lee, D.-J. (2013). In A. Pandey, D. J. Lee, Y. Chisti, & C. R. Soccol (Eds.), Biofuels from algae (pp. 86–87). Amsterdam: Elsevier Science.

    Google Scholar 

  27. Singh, J., & Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14, 2596–2610.

    Article  CAS  Google Scholar 

  28. Srichuwong, S., Sunarti, T. C., Mishima, T., Isono, N., & Hisamatsu, M. (2005). Starches from different botanical sources II: contribution of starch structure to swelling and pasting properties. Carbohydrate Polymers, 62, 25–34.

    Article  CAS  Google Scholar 

  29. Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2, 012701.

    Article  Google Scholar 

  30. Vandamme, D., Foubert, I., Meesschaert, B., & Muylaert, K. (2010). Flocculation of microalgae using cationic starch. Journal of Applied Phycology, 22, 525–530.

    Article  Google Scholar 

  31. Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 31, 233–239.

    Article  CAS  Google Scholar 

  32. Wang, S.-K., Wang, F., Hu, Y.-R., Stiles, A. R., Guo, C., & Liu, C.-Z. (2013). Magnetic flocculant for high efficiency harvesting of microalgal cells. ACS Applied Materials & Interfaces, 6, 109–115.

    Article  CAS  Google Scholar 

  33. Xu, L., Guo, C., Wang, F., Zheng, S., & Liu, C.-Z. (2011). A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresource Technology, 102, 10047–10051.

    Article  CAS  Google Scholar 

  34. Zhang, J., & Hu, B. (2012). A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresource Technology, 114, 529–535.

    Article  CAS  Google Scholar 

  35. Zheng, H., Gao, Z., Yin, J., Tang, X., Ji, X., & Huang, H. (2012). Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresource Technology, 112, 212–220.

    Article  CAS  Google Scholar 

  36. Zhou, W., Cheng, Y., Li, Y., Wan, Y., Liu, Y., Lin, X., & Ruan, R. (2012). Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Applied Biochemistry and Biotechnology, 167, 214–228.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National 863 Program of China (2013AA065804) and the Special Fund for Forest Scientific Research in the Public Welfare (20140420402). We thank Fengge Zhang and Yun Zhang for their help with the cultivation of algae and the collection of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunhai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Li, S., Zheng, J. et al. Harvesting Microalgae with Different Sources of Starch-Based Cationic Flocculants. Appl Biochem Biotechnol 181, 112–124 (2017). https://doi.org/10.1007/s12010-016-2202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2202-9

Keywords

Navigation