Skip to main content
Log in

Methane Potential and Microbial Community Dynamics in Anaerobic Digestion of Silage and Dry Cornstalks: a Substrate Exchange Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Silage and dry are the two typical cornstalk forms. Either form could be used as substrate in biogas plants and might be replaced by another when shortage occurred. This study focused on the feeding sequence of these two kinds of feedstocks, aiming to discuss their specific methane potential (SMP). A 15-day hydraulic retention time was chosen for semi-continuous experiments based on the batch test results. In semi-continuous experiments, before and after feedstocks were exchanged, the significantly decreased and comparable SMPs of silage and dry cornstalks indicated that a basis of unstable digestion would result in incomplete methane release from the subsequent digestion. A higher similarity of bacterial community structure and greater quantity of bacteria were shown in acidified silage cornstalk digestion through band similarity analysis. Methanosaetaceae and methanomicrobiales were the predominant methanogens, and aceticlastic methanogenesis was the main route for methane production. The different feeding sequences affected the hydrolysis course and further influenced the methanogenic proliferation. Our work suggests that silage cornstalk digestion should be conducted before dry cornstalk digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amon, T., Amon, B., Kryvoruchko, V., Machmuller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Potsch, E., Wagentristl, H., Schreiner, M., & Zollitsch, W. (2007). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioprocess Technology, 98, 3204–3212.

    CAS  Google Scholar 

  2. Gupta, A., Kumar, A., Sharma, S., & Vijay, V. K. (2013). Comparative evaluation of raw and detoxified mahua seed cake for biogas production. Applied Energy, 102, 1514–1521.

    Article  CAS  Google Scholar 

  3. Mei, Z. L., Liu, X. F., Huang, X. B., Li, D., Yan, Z. Y., Yuan, Y. X., & Huang, Y. J. (2016). Anaerobic mesophilic codigestion of rice straw and chicken manure: effects of organic loading rate on process stability and performance. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2035-6.

    Google Scholar 

  4. Gao, R. F., Yuan, X. F., Zhu, W. B., Wang, X. F., Chen, S. J., Cheng, X., & Cui, Z. J. (2012). Methane yield through anaerobic digestion for various maize varieties in China. Bioprocess Technology, 118, 611–614.

    CAS  Google Scholar 

  5. Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860.

    Article  CAS  Google Scholar 

  6. Herrmann, A. (2013). Biogas production from maize: current state, challenges and prospects. 2. Agronomic and environmental aspects. Bioenergy Research, 6, 372–387.

    Article  CAS  Google Scholar 

  7. Holm-Nielsen, J. B., Al Seadi, T., & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioprocess Technology, 100, 5478–5484.

    CAS  Google Scholar 

  8. Klimiuk, E., Pokój, T., Budzyński, W., & Dubis, B. (2010). Theoretical and observed biogas production from plant biomass of different fibre contents. Bioprocess Technology, 101, 9527–9535.

    CAS  Google Scholar 

  9. Sambusiti, C., Monlau, F., Ficara, E., Carrère, H., & Malpei, F. (2013). A comparison of different pre-treatments to increase methane production from two agricultural substrates. Applied Energy, 104, 62–70.

    Article  CAS  Google Scholar 

  10. Jiang, D., Zhuang, D. F., Fu, J. Y., Huang, Y. H., & Wen, K. G. (2012). Bioenergy potential from crop residues in China: availability and distribution. Renewable & Sustainable Energy Reviews, 16(3), 1377–1382.

    Article  Google Scholar 

  11. Chen, X., Zhang, Y., Gu, Y., Liu, Z., Shen, Z., Chu, H., & Zhou, X. (2014). Enhancing methane production from rice straw by extrusion pretreatment. Applied Energy, 122, 34–41.

    Article  CAS  Google Scholar 

  12. Liu, W., Lund, H., Mathiesen, B. V., & Zhang, X. (2011). Potential of renewable energy systems in China. Applied Energy, 88, 518–525.

    Article  Google Scholar 

  13. Wang, R., Sun, Y., Zhang, S., & Lu, X. (2012). Two-step pretreatment of corn stalk silage for increasing sugars production and decreasing the amount of catalyst. Bioprocess Technology, 120, 290–294.

    CAS  Google Scholar 

  14. Herrmann, C., Heiermann, M., & Idler, C. (2011). Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioprocess Technology, 102, 5153–5161.

    CAS  Google Scholar 

  15. Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.

    Article  CAS  Google Scholar 

  16. Molinuevo-Salces, B., González-Fernández, C., Gómez, X., García-González, M. C., & Morán, A. (2012). Vegetable processing wastes addition to improve swine manure anaerobic digestion: evaluation in terms of methane yield and SEM characterization. Applied Energy, 91, 36–42.

    Article  CAS  Google Scholar 

  17. Sanaei-Moghadam, A., Abbaspour-Fard, M. H., Aghel, H., Aghkhani, M. H., & Abedini-Torghabeh, J. (2014). Enhancement of biogas production by co-digestion of potato pulp with cow manure in a CSTR system. Applied Biochemistry and Biotechnology, 173, 1858–1869.

    Article  CAS  Google Scholar 

  18. Wang, X. J., Yang, G. H., Feng, Y. Z., Ren, G. X., & Han, X. H. (2012). Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioprocess Technology, 120, 78–83.

    CAS  Google Scholar 

  19. Wang, X. J., Yang, G. H., Li, F., Feng, Y. Z., Ren, G. X., & Han, X. H. (2013). Evaluation of two statistical methods for optimizing the feeding composition in anaerobic co-digestion: mixture design and central composite design. Bioprocess Technology, 131, 172–178.

    CAS  Google Scholar 

  20. Zhang, D. D., Li, J., Guo, P., Li, P., Suo, Y. L., Wang, X. J., & Cui, Z. J. (2011). Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. Bioprocess Technology, 102, 4703–4711.

    CAS  Google Scholar 

  21. APHA (2005) Standard methods for the examination of water and wastewater. 21th ed. Washington DC: American Public Health Association. American Water Works Association and Water Environment Federation.

  22. Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  23. Lueders, T., & Friedrich, M. W. (2002). Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Applied and Environmental Microbiology, 68, 2484–2494.

    Article  CAS  Google Scholar 

  24. Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Bioinspiration & Biomimetics, 89, 670–679.

    CAS  Google Scholar 

  25. Xie, S., Lawlor, P. G., Frost, J. P., Hu, Z., & Zhan, X. (2011). Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioprocess Technology, 102, 5728–5733.

    CAS  Google Scholar 

  26. Panichnumsin, P., Nopharatana, A., Ahring, B., & Chaiprasert, P. (2010). Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Bioinspiration & Biomimetics, 34, 1117–1124.

    CAS  Google Scholar 

  27. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., & Lens, P. N. L. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, 123, 143–156.

    Article  CAS  Google Scholar 

  28. Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Progress in Biocybernetics, 40(11), 3412–3418.

    CAS  Google Scholar 

  29. Nielsen, H. B., Uellendahl, H., & Ahring, B. K. (2007). Regulation and optimization of the biogas process: propionate as a key parameter. Bioinspiration & Biomimetics, 31, 820–830.

    CAS  Google Scholar 

  30. Speece, R. G. (1996). Anaerobic biotechnology for industrial wastewaters. Tennessee: Archae Press: Vanderbilt University.

    Google Scholar 

  31. Lee, S. H., Kang, H. J., Lee, Y. H., Lee, T. J., Han, K., Choi, Y., & Park, H. D. (2012). Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. Journal of Environmental Monitoring, 14, 1893–1905.

    Article  CAS  Google Scholar 

  32. Klocke, M., Mahnert, P., Mundt, K., Souidi, K., & Linke, B. (2007). Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Systematic and Applied Microbiology, 30, 139–151.

    Article  CAS  Google Scholar 

  33. Krause, L., Diaz, N. N., Edwards, R. A., Gartemann, K. H., Kromeke, H., Neuweger, H., Puhler, A., Runte, K. J., Schluter, A., Stoye, J., Szczepanowski, R., Tauch, A., & Goesmann, A. (2008). Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. Journal of Biochemistry, 136, 91–101.

    CAS  Google Scholar 

  34. McHugh, S., Carton, M., Mahony, T. O., & Flaherty, V. (2003). Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiology Letters, 219, 297–304.

    Article  CAS  Google Scholar 

  35. Wang, W., Yan, L., Cui, Z., Gao, Y., Wang, Y., & Jing, R. (2011). Characterization of a microbial consortium capable of degrading lignocellulose. Bioprocess Technology, 102, 9321–9324.

    CAS  Google Scholar 

  36. Grabowski, A., Blanchet, D., & Jeanthon, C. (2005). Characterization of long-chain fatty-acid-degrading syntrophic associations from a biodegraded oil reservoir. Research in Microbiology, 156, 814–821.

    Article  CAS  Google Scholar 

  37. Bertin, L., Lampis, S., Todaro, D., Scoma, A., Vallini, G., Marchetti, L., Majone, M., & Fava, F. (2010). Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon. Water Research, 44, 4537–4549.

    Article  CAS  Google Scholar 

  38. Biswas, R., Bagchi, S., Bihariya, P., Das, A., & Nandy, T. (2011). Stability and microbial community structure of a partial nitrifying fixed-film bioreactor in long run. Bioprocess Technology, 102, 2487–2494.

    CAS  Google Scholar 

  39. Conrad, R., & Klose, M. (2006). Dynamics of the methanogenic archaeal community in anoxic rice soil upon addition of straw. European Journal of Soil Science, 57, 476–484.

    Article  Google Scholar 

  40. Williams, J., Williams, H., Dinsdale, R., Guwy, A., & Esteves, S. (2013). Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management. Bioprocess Technology, 140, 234–242.

    CAS  Google Scholar 

  41. Klocke, M., Nettmann, E., Bergmann, I., Mundt, K., Souidi, K., Mumme, J., & Linke, B. (2008). Characterization of the methanogenic archaea within two-phase biogas reactor systems operated with plant biomass. Systematic and Applied Microbiology, 31, 190–205.

    Article  CAS  Google Scholar 

  42. Leclerc, M., Delgènes, J., & Godon, J. (2004). Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environmental Microbiology, 6, 809–819.

    Article  CAS  Google Scholar 

  43. Chin, K. J., Lueders, T., Friedrich, M. W., Klose, M., & Conrad, R. (2004). Archaeal community structure and pathway of methane formation on rice roots. Microbial Ecology, 47, 59–67.

    Article  CAS  Google Scholar 

  44. Wu, J. H., Liu, W. T., Tseng, I. C., & Cheng, S. S. (2001). Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Environmental Microbiology, 147, 373–382.

    CAS  Google Scholar 

  45. Kim, W., Lee, S., Shin, S. G., Lee, C., Hwang, K., & Hwang, S. (2010). Methanogenic community shift in anaerobic batch digesters treating swine wastewater. Water Research, 44, 4900–4907.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the special fund for Agro-scientific Research in the Public Interest (No. 2012AA101803), the National Key Technology R&D Program of China (No. 2012BAD14B06), and National Natural Science Foundation of China (Grant No. 51408600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongjun Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yuan, X., Wen, B. et al. Methane Potential and Microbial Community Dynamics in Anaerobic Digestion of Silage and Dry Cornstalks: a Substrate Exchange Study. Appl Biochem Biotechnol 181, 91–111 (2017). https://doi.org/10.1007/s12010-016-2201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2201-x

Keywords

Navigation