Skip to main content

Advertisement

Log in

Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Termites are well recognized for their thriving on recalcitrant lignocellulosic diets through nutritional symbioses with gut-dwelling microbiota; however, the effects of diet changes on termite gut microbiota are poorly understood, especially for the lower termites. In this study, we employed high-throughput 454 pyrosequencing of 16S V1–V3 amplicons to compare gut microbiotas of Tsaitermes ampliceps fed with lignin-rich and lignin-poor cellulose diets after a 2-week-feeding period. As a result, the majority of bacterial taxa were shared across the treatments with different diets, but their relative abundances were modified. In particular, the relative abundance was reduced for Spirochaetes and it was increased for Proteobacteria and Bacteroides by feeding the lignin-poor diet. The evenness of gut microbiota exhibited a significant difference in response to the diet type (filter paper diets < corn stover diets < wood diets), while their richness was constant, which may be related to the lower recalcitrance of this biomass to degradation. These results have important implications for sampling and analysis strategies to probe the lignocellulose degradation features of termite gut microbiota and suggest that the dietary lignocellulose composition could cause shifting rapidly in the termite gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bugg, T. D., Ahmad, M., Hardiman, E. M., & Singh, R. (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 22, 394–400.

    Article  CAS  Google Scholar 

  2. McDonald, J. E., Rooks, D. J., & McCarthy, A. J. (2012). Methods for the isolation of cellulose-degrading microorganisms. Methods in Enzymology, 510, 349–374.

    Article  CAS  Google Scholar 

  3. Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12, 168–180.

    Article  CAS  Google Scholar 

  4. Scharf, M. E. (2015). Omic research in termites: an overview and a roadmap. Frontiers in Genetics, 6, 76.

    Article  Google Scholar 

  5. Fraune, S., & Bosch, T. C. G. (2010). Why bacteria matter in animal development and evolution. BioEssays, 32, 571–580.

    Article  CAS  Google Scholar 

  6. Scharf, M. E. (2015). Termites as targets and models for biotechnology. Annual Review of Entomology, 60, 77–102.

    Article  CAS  Google Scholar 

  7. Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., Szeto, E., Salamov, A., Barry, K., Mikhailova, N., Kyrpides, N. C., Matson, E. G., Ottesen, E. A., Zhang, X., Hernández, M., Murillo, C., Acosta, L. G., Rigoutsos, I., Tamayo, G., Green, B. D., Chang, C., Rubin, E. M., Mathur, E. J., Robertson, D. E., Hugenholtz, P., & Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450, 560–565.

    Article  CAS  Google Scholar 

  8. Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6, 740–751.

    Article  Google Scholar 

  9. Benjamino, J., & Graf, J. (2016). Characterization of the core and caste-specific microbiota in the termite, Reticulitermes flavipes. Frontiers in Microbiology, 7, 171.

    Article  Google Scholar 

  10. Ohkuma, M., Sato, T., Noda, S., Ui, S., Kudo, T., & Hongoh, Y. (2007). The candidate phylum ‘termite group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiology Ecology, 60, 467–476.

    Article  CAS  Google Scholar 

  11. Brugerolle, G., & Radek, R. (2006). Symbiotic protozoa of termites. In H. König & A. Varma (Eds.), Intestinal microorganisms of soil invertebrates. Soil biology. Vol. 6 (pp. 243–269). Berlin: Springer.

    Chapter  Google Scholar 

  12. Berlanga, M., Pasteur, B. J., Grandcolas, P., & Guerrero, R. (2011). Comparison of the gut microbiota from soldier and worker castes of the termite Reticulitermes grassei. International Microbiology, 14, 83–93.

    CAS  Google Scholar 

  13. Scharf, M. E., Karl, Z. J., Sethi, A., & Boucias, D. G. (2011). Multiple levels of synergistic collaboration in termite lignocellulose digestion. PloS One, 6, e21709.

    Article  CAS  Google Scholar 

  14. Scharf, M. E., Karl, Z. J., Sethi, A., Sen, R., Raychoudhury, R., & Boucias, D. G. (2011). Defining host-symbiont collaboration in termite lignocellulose digestion, “the view from the tip of the iceberg. Communicative & Integrative Biology, 4, 761–763.

    Article  CAS  Google Scholar 

  15. Sinma, K., Khucharoenphaisan, K., Kitpreechavanich, V., & Tokuyama, S. (2011). Purification and characterization of a thermostable xylanase from Saccharopolyspora pathumthaniensis S582 isolated from the gut of a termite. Bioscience, Biotechnology, and Biochemistry, 75, 1957–1963.

    Article  CAS  Google Scholar 

  16. Hongoh, Y. (2010). Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience, Biotechnology, and Biochemistry, 74, 1145–1151.

    Article  CAS  Google Scholar 

  17. Tai, V., James, E. R., Nalepa, C. A., Scheffrahn, R. H., Perlman, S. J., & Keeling, P. J. (2015). The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Applied and Environmental Microbiology, 81, 1059–1070.

    Article  Google Scholar 

  18. Abdul Rahman, N., Parks, D. H., Willner, D. L., Engelbrektson, A. L., Goffredi, S. K., Warnecke, F., Scheffrahn, R. H., & Hugenholtz, P. (2015). A molecular survey of Australian and north American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiologica, 3, 5.

    Google Scholar 

  19. Karl, Z. J., & Scharf, M. E. (2015). Effects of five diverse lignocellulosic diets on digestive enzyme biochemistry in the termite Reticulitermes flavipes. Archives of Insect Biochemistry and Physiology, 90, 89–103.

    Article  CAS  Google Scholar 

  20. Huang, X. F., Bakker, M. G., Judd, T. M., Reardon, K. F., & Vivanco, J. M. (2013). Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microbial Ecology, 65, 531–536.

    Article  Google Scholar 

  21. Boucias, D. G., Cai, Y., Sun, Y., Lietze, V. U., Sen, R., Raychoudhury, R., & Scharf, M. E. (2013). The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Molecular Ecology, 22, 1836–1853.

    Article  CAS  Google Scholar 

  22. Raychoudhury, R., Sen, R., Cai, Y., Sun, Y., Lietze, V. U., Boucias, D. G., & Scharf, M. E. (2013). Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Insect Molecular Biology, 22, 155–171.

    Article  CAS  Google Scholar 

  23. Brauman, A., Doré, J., Eggleton, P., Bignell, D., Breznak, J. A., & Kane, M. D. (2001). Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiology Ecology, 35, 27–36.

    Article  CAS  Google Scholar 

  24. Mikaelyan, A., Dietrich, C., Köhler, T., Poulsen, M., Sillam-Dussès, D., & Brune, A. (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology, 24, 5284–5295.

    Article  CAS  Google Scholar 

  25. Huang, F. S., Zhu, S. M., Ping, Z. M., He, X. S., & Li, G. X. (2000). Fauna Sinica Insecta, vol. 17 Isoptera (pp. 430–865). Beijing: Science Press.

    Google Scholar 

  26. Su, L. J., Liu, Y. Q., Liu, H., Wang, Y., Li, Y., Lin, H. M., Wang, F. Q., & Song, A. D. (2015). Linking lignocellulosic dietary patterns with gut microbial Enterotypes of Tsaitermes ampliceps and comparison with Mironasutitermes shangchengensis. Genetics and Molecular Research, 14, 13954–13967.

    Article  Google Scholar 

  27. Liu, N., Yan, X., Zhang, M., Xie, L., Wang, Q., Huang, Y., Zhou, X., Wang, S., & Zhou, Z. (2011). Microbiome of fungus-growing termites: a new res ervoir for lignocellulase genes. Applied and Environmental Microbiology, 77, 48–56.

    Article  CAS  Google Scholar 

  28. Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PloS One, 6, e27310.

    Article  CAS  Google Scholar 

  29. Schloss, P. D., Westcott, S. L., Ryabin, T., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.

    Article  CAS  Google Scholar 

  30. Kunin, V., Engelbrektson, A., Ochman, H., & Hugenholtz, P. (2010). Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118–123.

    Article  CAS  Google Scholar 

  31. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. U. (2011). CHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.

    Article  CAS  Google Scholar 

  32. Kuhnigk, T., & König, H. (1997). Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. Journal of Basic Microbiology, 37, 205–211.

    Article  CAS  Google Scholar 

  33. Aickin, M., & Gensler, H. (1996). Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. American Journal of Public Health, 86, 726–728.

    Article  CAS  Google Scholar 

  34. Berchtold, M., Chatzinotas, A., Schönhuber, W., Brune, A., Amann, R., Hahn, D., & König, H. (1999). Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Archives of Microbiology, 172, 407–416.

    Article  CAS  Google Scholar 

  35. Ni, J., & Tokuda, G. (2013). Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 31, 838–850.

    Article  CAS  Google Scholar 

  36. Brune, A. (2006). Symbiotic associations between termites and prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes, vol. 1. Symbiotic associations, biotechnology, applied microbiology (pp. 439–474). New York: Springer.

    Google Scholar 

  37. He, S., Ivanova, N., Kirton, E., Allgaier, M., Bergin, C., Scheffrahn, R. H., Kyrpides, N. C., Warnecke, F., Tringe, S. G., & Hugenholtz, P. ((2013)). Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PloS One, 8, e61126.

    Article  CAS  Google Scholar 

  38. Dietrich, C., Köhler, T., & Brune, A. (2014). The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology, 80, 2261–2269.

    Article  Google Scholar 

  39. Dröge, S., Fröhlich, J., Radek, R., & König, H. (2006). Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Applied and Environmental Microbiology, 72, 392–397.

    Article  Google Scholar 

  40. Hongoh, Y., Sharma, V. K., Prakash, T., Noda, S., Toh, H., Taylor, T. D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M., & Ohkuma, M. (2008). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science, 322, 1108–1109.

    Article  CAS  Google Scholar 

  41. Yang, Y. J., Zhang, N., Ji, S. Q., Lan, X., Zhang, K. D., Shen, Y. L., Li, F. L., & Ni, J. F. (2014). Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite. International Journal of Systematic and Evolutionary Microbiology, 64, 2956–2961.

    Article  CAS  Google Scholar 

  42. Pramono, A. K., Sakamoto, M., Iino, T., Hongoh, Y., & Ohkuma, M. (2015). Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. International Journal of Systematic and Evolutionary Microbiology, 65, 681–685.

    Article  CAS  Google Scholar 

  43. Pinheiro, G. L., Correa, R. F., Cunha, R. S., Cardoso, A. M., Chaia, C., Clementino, M. M., Garcia, E. S., de Souza, W., & Frasés, S. (2015). Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica. Frontiers in Microbiology, 6, 860.

    Article  Google Scholar 

  44. Hongoh, Y., Sato, T., Dolan, M. F., Noda, S., Ui, S., Kudo, T., & Ohkuma, M. (2007). The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Applied and Environmental Microbiology, 73, 6270–6276.

    Article  CAS  Google Scholar 

  45. Wasi, S., Tabrez, S., & Ahmad, M. (2013). Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environmental Monitoring and Assessment, 185, 8147–8155.

    Article  Google Scholar 

  46. Jiménez, D. J., Korenblum, E., & van Elsas, J. D. (2014). Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Applied Microbiology and Biotechnology, 98, 2789–2803.

    Article  Google Scholar 

  47. Kannisto, M. S., Mangayil, R. K., Shrivastava-Bhattacharya, A., Pletschke, B. I., Karp, M. T., & Santala, V. P. (2015). Metabolic engineering of Acinetobacter Baylyi ADP1 for removal of clostridium butyricum growth inhibitors produced from lignocellulosic hydrolysates. Biotechnology for Biofuels, 8, 198.

    Article  Google Scholar 

  48. Oosterkamp, M. J., Méndez-García, C., Kim, C.-H., Bauer, S., Ibáñez, A. B., Zimmerman, S., Hong, P.-Y., Cann, I. K., & Mackie, R. I. (2016). Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system. Biotechnology for Biofuels, 9, 120.

    Article  Google Scholar 

  49. He, Y., Ding, Y., & Long, Y. (1991). Two cellulolytic clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. International Journal of Systematic Bacteriology, 41, 306–309.

    Article  CAS  Google Scholar 

  50. Huang, X. F., Santhanam, N., Badri, D. V., Hunter, W. J., Manter, D. K., Decker, S. R., Vivanco, J. M., & Reardon, K. F. (2013). Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnology and Bioengineering, 110, 1616–1626.

    Article  CAS  Google Scholar 

  51. Geib, S. M., Filley, T. R., Hatcher, P. G., et al. (2008). Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences of the United States of America, 105, 12932–12937.

    Article  CAS  Google Scholar 

  52. Chaffron, S., & von Mering, C. (2007). Termites in the woodwork. Genome Biology, 8, 229.

    Article  Google Scholar 

  53. Wei, H., Xu, Q., Taylor, L. E., Baker, J. O., Tucker, M. P., & Ding, S. Y. (2009). Natural paradigms of plant cell wall degradation. Current Opinion in Biotechnology, 20, 330–338.

    Article  CAS  Google Scholar 

  54. Vikman, M., Karjomaa, S., Kapanen, A., Wallenius, K., & Itavaara, M. (2002). The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions. Applied Microbiology and Biotechnology, 59, 591–598.

    Article  CAS  Google Scholar 

  55. Reichling, J. (2010). Plant–microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. In M. Wink (Ed.), Annual plant reviews volume 39: functions and biotechnology of plant secondary metabolites (pp. 214–347). Oxford: Wiley.

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation of China Grant 31170350.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to En Tao Wang or Andong Song.

Ethics declarations

Conflict of Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in the manuscript entitled, “Variation in the gut microbiota and sensitivity to dietary changes in termite hosts”.

Additional information

Lijuan Su and Lele Yang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Yang, L., Huang, S. et al. Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets. Appl Biochem Biotechnol 181, 32–47 (2017). https://doi.org/10.1007/s12010-016-2197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2197-2

Keywords

Navigation