Skip to main content

Advertisement

Log in

Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofertilizers have been widely used in many countries for their benefit to soil biological and physicochemical properties. A new microbial biofertilizer containing Phanerochaete chrysosporium and Bacillus thuringiensis was prepared to decrease nicotine content in tobacco leaves by regulating soil nitrogen supply. Soil NO3 -N, NH4 +-N, nitrogen supply-related enzyme activities, and nitrogen accumulation in plant leaves throughout the growing period were investigated to explore the mechanism of nicotine reduction. The experimental results indicated that biofertilizer can reduce the nicotine content in tobacco leaves, with a maximum decrement of 16–18 % in mature upper leaves. In the meantime, the total nitrogen in mature lower and middle leaves increased with the application of biofertilizer, while an opposite result was observed in upper leaves. Protein concentration in leaves had similar fluctuation to that of total nitrogen in response to biofertilizer. NO3 -N content and nitrate reductase activity in biofertilizer-amended soil increased by 92.3 and 42.2 %, respectively, compared to those in the control, whereas the NH4 +-N and urease activity decreased by 37.8 and 29.3 %, respectively. Nitrogen uptake was improved in the early growing stage, but this phenomenon was not observed during the late growth period. Nicotine decrease is attributing to the adjustment of biofertilizer in soil nitrogen supply and its uptake in tobacco, which result in changes of nitrogen content as well as its distribution in tobacco leaves. The application of biofertilizer containing P. chrysosporium and B. thuringiensis can reduce the nicotine content and improve tobacco quality, which may provide some useful information for tobacco cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160, 83–89.

    Article  CAS  Google Scholar 

  2. Jafarnejadi, A. R., Sayyad, G., Homaee, M., & Davamei, A. H. (2013). Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics. Environmental Monitoring and Assessment, 185, 4087–4096.

    Article  CAS  Google Scholar 

  3. Nacke, H., Gonçalves Jr, A. C., Schwantes, D., Nava, I. A., Strey, L., & Coelho, G. F. (2013). Availability of heavy metals (Cd, Pb, and Cr) in agriculture from commercial fertilizers. Archives of Environmental Contamination and Toxicology, 64, 537–544.

    Article  CAS  Google Scholar 

  4. Singh, A., & Mishra, A. K. (2015). Influence of various levels of iron and other abiotic factors on siderophorogenesis in paddy field cyanobacterium Anabaena oryzae. Applied Biochemistry and Biotechnology, 176(2), 372–386.

    Article  CAS  Google Scholar 

  5. Jain, R., Gary, V., & Saxena, J. (2015). Effect of an organophosphate pesticide, monocrotophos, on phosphate-solubilizing efficiency of soil fungal isolates. Applied Biochemistry and Biotechnology, 175(2), 813–824.

    Article  CAS  Google Scholar 

  6. Yu, Q., Ma, J., Zou, P., Lin, H., Sun, W., Yin, J., & Fu, J. (2015). Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils. Environmental Science and Pollution Research, 22, 472–481.

    Article  CAS  Google Scholar 

  7. Zanetti, F., Giacomello, M., Donati, Y., Carnesecchi, S., Frieden, M., & Barazzone-Argiroffo, C. (2014). Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells. Free Radical Biology and Medicine, 76, 173–184.

    Article  CAS  Google Scholar 

  8. Kaiser, D. R., Reinert, D. J., Reichert, J. M., Streck, C. A., & Pellegrini, A. (2010). Nitrate and ammonium in soil solution in tobacco management systems. Revista Brasileira de Ciência do Solo, 34, 379–388.

    Article  CAS  Google Scholar 

  9. Walch-Liu, P., Neumann, G., Bangerth, F., & Engels, C. (2000). Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany, 51, 227–237.

    Article  CAS  Google Scholar 

  10. Wyland, L. J., Jackson, L. E., Chaney, W. E., Klonsky, K., Koike, S. T., & Kimple, B. (1996). Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agriculture, Ecosystems & Environment, 59, 1–17.

    Article  Google Scholar 

  11. Bastida, F., Pérez-de-Mora, A., Babic, K., Hai, B., Hernández, T., García, C., & Schloter, M. (2009). Role of amendments on N cycling in Mediterranean abandoned semiarid soils. Applied Soil Ecology, 41, 195–205.

    Article  Google Scholar 

  12. Yang, N., Wang, Z., Gao, Y., Zhao, H., Li, K., Li, F., & Malhi, S. S. (2014). Effects of planting soybean in summer fallow on wheat grain yield, total N and Zn in grain and available N and Zn in soil on the Loess Plateau of China. European Journal of Agronomy, 58, 63–72.

    Article  CAS  Google Scholar 

  13. Hatch, D. J., Goodlass, G., Joynes, A., & Shepherd, M. A. (2007). The effect of cutting, mulching and applications of farm yard manure on nitrogen fixation in a red clover grass sward. Bioresource Technology, 98(17), 3243–3248.

    Article  CAS  Google Scholar 

  14. Mohammadi, K., & Rokhzadi, A. (2012). An integrated fertilization system of canola (Brassica napus L.) production under different crop rotations. Industrial Crops and Products, 37, 264–269.

    Article  CAS  Google Scholar 

  15. Gharib, F. A., Moussa, L. A., & Massoud, O. N. (2008). Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. International Journal of Agriculture and Biology, 10, 381–387.

    Google Scholar 

  16. Herrmann, L., & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. World Journal of Microbiology and Biotechnology, 97, 8859–8873.

    Article  CAS  Google Scholar 

  17. Parra-Cota, F. I., Peña-Cabriales, J. J., de los Santos-Villalobos, S., Martínez-Gallardo, N. A., & Délano-Frier, J. P. (2014). Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PloS One, 9(2), e88094.

    Article  Google Scholar 

  18. Singh, S., & Datta, P. (2007). Outdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants. Plant and Soil, 296, 95–102.

    Article  CAS  Google Scholar 

  19. Innok, S., Chunleuchanon, S., Boonkerd, N., & Teaumroong, N. (2009). Cyanobacterial akinete induction and its application as biofertilizer for rice cultivation. Journal of Applied Phycology, 21, 737–744.

    Article  Google Scholar 

  20. Gamal-Eldin, H., & Elbanna, K. (2011). Field evidence for the potential of Rhodobacter capsulatus as biofertilizer for flooded rice. Current Microbiology, 62, 391–395.

    Article  CAS  Google Scholar 

  21. Zhu, H. J., Sun, L. F., Zhang, Y. F., Zhang, X. L., & Qiao, J. J. (2012). Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresource Technology, 111, 410–416.

    Article  CAS  Google Scholar 

  22. Yu, Z., Zeng, G. M., Chen, Y. N., Zhang, J. C., Yu, Y., Li, H., Liu, Z. F., & Tang, L. (2011). Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochemistry, 46, 1285–1291.

    Article  CAS  Google Scholar 

  23. Zhang, J., Zeng, G., Chen, Y., Liang, J., Zhang, C., Huang, B., Sun, W., Chen, M., Yu, M., Huang, H., & Zhu, Y. (2014). Phanerochaete chrysosporium inoculation shapes the indigenous fungal communities during agricultural waste composting. Biodegradation, 25, 669–680.

    Article  CAS  Google Scholar 

  24. Chen, A., Zeng, G., Chen, G., Liu, L., Shang, C., Hu, X., Lu, L., Chen, M., Zhou, Y., & Zhang, Q. (2014). Plasma membrane behavior, oxidative damage, and defense mechanism in Phanerochaete chrysosporium under cadmium stress. Process Biochemistry, 49, 589–598.

    Article  CAS  Google Scholar 

  25. Huang, Z., Chen, G., Zeng, G., Chen, A., Zuo, Y., Guo, Z., Tan, Q., Song, Z., & Niu, Q. (2015). Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater. Journal of Hazardous Materials, 289, 174–183.

    Article  CAS  Google Scholar 

  26. Pan, Z., Xu, L., Zhu, Y., Shi, H., Chen, Z., Chen, M., Chen, Q., & Liu, B. (2014). Characterization of a new cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella L. World Journal of Microbiology and Biotechnology, 30, 2655–2662.

    Article  CAS  Google Scholar 

  27. Guan, P., Dai, X., Zhu, J., Li, Q., Li, S., Wang, S., Li, P., & Zheng, A. (2014). Bacillus thuringiensis subsp. sichuansis strain MC28 produces a novel crystal protein with activity against Culex quinquefasciatus larvae. World Journal of Microbiology and Biotechnology, 30, 1417–1421.

    Article  CAS  Google Scholar 

  28. Hamadou-Charfi, D. B., Sauer, A. J., Abdelkafi-Mesrati, L., Jaoua, S., & Stephan, D. (2015). Production of polyclonal and monoclonal antibodies against the Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16. Applied Biochemistry and Biotechnology, 175(5), 2357–2365.

    Article  CAS  Google Scholar 

  29. Kamoun, F., Fguira, I. B., Hassen, N. B. B., Mejdoub, H., Lereclus, D., & Jaoua, S. (2011). Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Applied Biochemistry and Biotechnology, 165(1), 300–314.

    Article  CAS  Google Scholar 

  30. Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F., & Zeikus, J. G. (1978). Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Archives of Microbiology, 117, 277–285.

    Article  CAS  Google Scholar 

  31. Singh, D. K., & Kumar, S. (2008). Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere, 71, 412–418.

    Article  CAS  Google Scholar 

  32. Huang, Y. F., Ye, Y. L., & Yang, S. Q. (2009). Feasibility of NO3 -N determination by dual wavelength spectrophotometric method. Chinese Agricultural Science Bulletin, 25, 43–45.

    Google Scholar 

  33. Çakir, R., & Çebi, U. (2010). The effect of irrigation scheduling and water stress on the maturity and chemical composition of Virginia tobacco leaf. Field Crops Research, 119, 269–276.

    Article  Google Scholar 

  34. Goenage, R. J., Volk, R. J., & Long, R. C. (1989). Uptake of nitrogen by flue-cured tobacco during maturation and senescence. Plant and Soil, 120, 133–139.

    Article  Google Scholar 

  35. Jiang, F., Li, C. J., Jeschke, W. D., & Zhang, F. S. (2001). Effect of top excision and replacement by 1-naphthylacetic acid on partition and flow of potassium in tobacco plants. Journal of Experimental Botany, 52, 2143–2150.

    Article  CAS  Google Scholar 

  36. Shi, Q. M., Li, C. J., & Zhang, F. S. (2006). Nicotine synthesis in Nicotiana tabacum L. induced by mechanical wounding is regulated by auxin. Journal of Experimental Botany, 57, 2899–2907.

    Article  CAS  Google Scholar 

  37. Xi, X. Y., Li, C. J., & Zhang, F. S. (2005). Nitrogen supply after removing the shoot apex increases the nicotine concentration and nitrogen content of tobacco plants. Annals of Botany, 96, 793–797.

    Article  CAS  Google Scholar 

  38. Liu, W. Q., Guo, H. X., & Li, H. (2008). Proteomics identification of differentially expressed proteins relevant for nicotine synthesis in flue-cured tobacco roots before and after decapitation. Agricultural Sciences in China., 7, 1084–1090.

    Article  CAS  Google Scholar 

  39. Karaivazoglou, N. A., Papakosta, D. K., & Divanidis, S. (2005). Effect of chloride in irrigation water and form of nitrogen fertilizer on Virginia (flue-cured) tobacco. Field Crops Research, 92, 61–74.

    Article  Google Scholar 

  40. Richards, I. R., Wallace, P. A., & Paulson, G. A. (1996). Effects of applied nitrogen on soil nitrate-nitrogen content after harvest of winter barley. Fertilizer Research, 45, 61–67.

    Article  Google Scholar 

  41. Zhang, J., Zeng, G., Chen, Y., Yu, M., Huang, H., Fan, C., Zhu, Y., Li, H., Liu, Z., Chen, M., & Jiang, M. (2013). Impact of Phanerochaete chrysosporium inoculation on indigenous bacterial communities during agricultural waste composting. Applied Microbiology and Biotechnology, 97, 3159–3169.

    Article  CAS  Google Scholar 

  42. Yu, M., Zeng, G., Chen, Y., Yu, H., Huang, D., & Tang, L. (2009). Influence of Phanerochaete chrysosporium on microbial communities and lignocellulose degradation during solid-state fermentation of rice straw. Process Biochemistry, 44, 17–22.

    Article  CAS  Google Scholar 

  43. Mekki, A., Dhouib, A., & Sayadi, S. (2006). Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiological Research, 161, 93–101.

    Article  Google Scholar 

  44. Hasan, H. A., Abdullah, S. R. S., Kofli, N. T., & Kamarudin, S. K. (2012). Effective microbes for simultaneous bio-oxidation of ammonia and manganese in biological aerated filter system. Bioresource Technology, 124, 355–363.

    Article  Google Scholar 

  45. Myrold, D. D., & Posavatz, N. R. (2007). Potential importance of bacteria and fungi in nitrate assimilation in soil. Soil Biology and Biochemistry, 39, 1737–1743.

    Article  CAS  Google Scholar 

  46. Qin, S. P., Hu, C. S., & Dong, W. X. (2010). Nitrification results in underestimation of soil urease activity as determined by ammonium production rate. Pedobiologia, 53, 401–404.

    Article  CAS  Google Scholar 

  47. Ali, T. A., & Wainwright, M. (1995). Effect of Phanerochaete chrysosporium on transformations of urea, sulphur-coated urea and peptone in soil. Bioresource Technology, 53, 91–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Natural Science Foundation of China (51508186, 51579099), the Hunan Provincial Natural Science Foundation of China (2016JJ3076), the Scientific Research Fund of Hunan Provincial Education Department, China (15C0654), the Scientific Research Staring Foundation for the introduced talents of Hunan Agricultural University (14YJ07), and the Youth Foundation of Hunan Agricultural University (15QN32).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anwei Chen or Guiqiu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, C., Chen, A., Chen, G. et al. Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply. Appl Biochem Biotechnol 181, 1–14 (2017). https://doi.org/10.1007/s12010-016-2195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2195-4

Keywords

Navigation