Skip to main content
Log in

Coagulant Activity of Water-Soluble Moringa oleifera Lectin Is Linked to Lowering of Electrical Resistance and Inhibited by Monosaccharides and Magnesium Ions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Moringa oleifera seeds contain a water-soluble lectin [water-soluble M. oleifera lectin (WSMoL)] that has shown coagulant activity. Magnesium ions are able to interfere with the ability of this lectin to bind carbohydrates. In this study, we performed structural characterization of WSMoL and analyzed its effect on the electrical resistance of a kaolin clay suspension in both presence and absence of monosaccharides (N-acetylglucosamine, glucose, or fructose) and magnesium ions. The coagulant activity of WSMoL was monitored by measuring optical density and electrical resistance over a period of 60 min. Native WSMoL had a molecular mass of 60 kDa and exhibited anionic nature (pI 5.5). In sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), it appeared as three polypeptide bands of 30, 20, and 10 kDa. WSMoL reduced the optical density and electrical resistance of the kaolin suspension, which suggests that suspended particles are destabilized and that this is followed by formation of complexes. The coagulant activity of lectin decreased in the presence of Mg2+ ions and carbohydrates at concentrations that also inhibited hemagglutinating activity. This was most likely due to conformational changes in lectin structure. Our findings suggest that the coagulant activity of WSMoL is enhanced by lowering of electrical resistance of the medium and is impaired by lectin–carbohydrate and lectin–Mg2+ interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Makkar, H. P. S., & Becker, K. (1997). Nutrients and anti-quality factors in different morphological parts of the Moringa oleifera tree. Journal of Agricultural Science, 128, 311–322.

    Article  Google Scholar 

  2. Gassenschimdt, U., Jany, K. D., Tauscher, B., & Niebergall, H. (1995). Isolation and characterization of a flocculating protein from Moringa oleifera Lam. Biochimica et Biophysica Acta, 1243, 477–481.

    Article  Google Scholar 

  3. Ndabigengesere, A., Narasiah, K. S., & Talbot, B. G. (1995). Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research, 29, 703–710.

    Article  CAS  Google Scholar 

  4. Okuda, T., Baes, A. U., Nishijima, W., & Okada, M. (2001). Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Research, 35, 405–410.

    Article  CAS  Google Scholar 

  5. Ghebremichael, K. A., Gunaratna, K. R., Henriksson, H., Brumer, H., & Dalhammar, G. (2005). A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research, 39, 2338–2344.

    Article  CAS  Google Scholar 

  6. Santos, A. F. S., Luz, L. A., Argolo, A. C. C., Teixeira, J. A., Paiva, P. M. G., & Coelho, L. C. B. B. (2009). Isolation of a seed coagulant Moringa oleifera lectin. Process Biochemistry, 44, 504–508.

    Article  CAS  Google Scholar 

  7. Ferreira, R. S., Napoleão, T. H., Santos, A. F. S., Sá, R. A., Carneiro-da-Cunha, M. G., Morais, M. M. C., Silva-Lucca, R. A., Oliva, M. L. V., Coelho, L. C. B. B., & Paiva, P. M. G. (2011). Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera. Letters in Applied Microbiology, 53, 186–192.

    Article  CAS  Google Scholar 

  8. Yu, J. F., Wang, D. S., Yan, M. Q., Ye, C., Yang, M., & Ge, X. (2007). Optimized coagulation of high alkalinity, low temperature and particle water: pH adjustment and polyelectrolytes as coagulant aids. Environmental Monitoring and Assessment, 131, 377–386.

    Article  CAS  Google Scholar 

  9. Cubas, A. L. Y. (1989). Floculação em meio granular expandido. Master’s thesis: Universidade Federal de Santa Catarina, Florianópolis, Brazil.

    Google Scholar 

  10. Di Bernardo, L., & Dantas, A. D. B. (2005). Métodos e técnicas de tratamento de água. São Paulo, Brazil: Rima.

    Google Scholar 

  11. Ferreira Filho, S. S., & Lage Filho, F. A. (1996). Comportamento químico do alumínio e do ferro em meio aquoso e implicações no tratamento de água. Sanare – Revista Técnica da Sanepar, 6, 50–58.

    Google Scholar 

  12. Hassemer, M. E. N. (2000). Tratamento de efluente têxtil—processo físico-químico com ozônio e floculação em meio granular. Master’s thesis: Universidade Federal de Santa Catarina, Florianópolis, Brazil.

    Google Scholar 

  13. Santos, A. F. S., Luz, L. A., Napoleão, T. H., Paiva, P. M. G., & Coelho, L. C. B. B. (2013). Coagulation, flocculation, agglutination and hemagglutination: similar properties? In J. C. Taylor (Ed.), Advances in Chemistry Research vol. 20 (pp. 51–70). New York: Nova Science Publishers Inc..

    Google Scholar 

  14. Duan, J., & Gregory, J. (2006). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100, 102–475.

    Google Scholar 

  15. Bolto, B., & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41, 2301–2324.

    Article  CAS  Google Scholar 

  16. Carvalho, M. J. H. (2008). Uso de coagulantes naturais no processo de obtenção de água potável. Master’s thesis: Universidade Estadual de Maringá, Maringá, Brazil.

    Google Scholar 

  17. Fabris, R., Chow, C. W., & Drikas, M. (2010). Evaluation of chitosan as a natural coagulant for drinking water treatment. Water Science and Technology, 61, 2119–2128.

    Article  CAS  Google Scholar 

  18. Hébert, E. (2000). Endogenous lectins as cell surface transducers. Bioscience Reports, 20, 213–237.

    Article  Google Scholar 

  19. Rambaruth, N. D. S., & Dwek, M. V. (2011). Cell surface glycan–lectin interactions in tumor metastasis. Acta Histochemica, 113, 591–600.

    Article  CAS  Google Scholar 

  20. Dias, R. O., Machado, L. S., Migliolo, L., & Franco, O. L. (2015). Insights into animal and plant lectins with antimicrobial activities. Molecules, 20, 519–541.

    Article  Google Scholar 

  21. Napoleão, T. H., Santos-Filho, T. G., Pontual, E. V., Ferreira, R. S., Coelho, L. C. B. B., & Paiva, P. M. G. (2013). Affinity matrices of Cratylia mollis seed lectins for isolation of glycoproteins from complex protein mixtures. Applied Biochemistry and Biotechnology, 171, 744–755.

    Article  Google Scholar 

  22. Oliveira, M. D. L., Nogueira, M. L., Correia, M. T. S., Coelho, L. C. B. B., & Andrade, C. A. S. (2012). Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sensors and Actuators B: Chemical, 155, 789–795.

    Article  Google Scholar 

  23. Lino, J. S. L., Oliveira, M. D. L., Melo, C. P., & Andrade, C. A. S. (2014). Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. Colloids and Surfaces B: Biointerfaces, 117, 549–554.

    Article  Google Scholar 

  24. Hemmi, H., Kuno, A., & Hirabayash, J. (2013). NMR structure and dynamics of the C-terminal domain of R-type lectin from the earthworm Lumbricus terrestris. FEBS Journal, 280, 70–82.

    Article  CAS  Google Scholar 

  25. Dong, M., Xu, S., Oliveira, C. L. P., Pedersen, J. S., Thiel, S., Besenbacher, F., & Vorup-Jensen, T. (2007). Conformational changes in mannan-binding lectin bound to ligand surfaces. Journal of Immunology, 178, 3016–3022.

    Article  CAS  Google Scholar 

  26. Santana, G. M. S., Albuquerque, L. P., Napoleão, T. H., Souza, S. R., Coelho, L. C. B. B., & Paiva, P. M. G. (2012). Electrochemical potential of Microgramma vaccinifolia rhizome lectin. Bioelectrochemistry, 85, 56–60.

    Article  CAS  Google Scholar 

  27. Ambrosi, M., Cameron, N. R., & Davis, B. G. (2005). Lectins: tools for the molecular understanding of the glycocode. Organic & Biomolecular Chemistry, 3, 1593–1608.

    Article  CAS  Google Scholar 

  28. Coelho, J. S., Santos, N. D. L., Napoleão, T. H., Gomes, F. S., Ferreira, R. S., Zingali, R. B., Coelho, L. C. B. B., Leite, S. P., Navarro, D. M. A. F., & Paiva, P. M. G. (2009). Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae. Chemosphere, 77, 934–938.

    Article  CAS  Google Scholar 

  29. Rolim, L. A. D. M. M., Macedo, M. F. S., Sisenando, H. A., Napoleão, T. H., Felzenszwalb, I., Aiub, C. A. F., Coelho, L. C. B. B., Medeiros, S. R. B., & Paiva, P. M. G. (2011). Genotoxicity evaluation of Moringa oleifera seed extract and lectin. Journal of Food Science, 76, T53–T58.

    Article  CAS  Google Scholar 

  30. Green, A. A., & Hughes, W. L. (1955). Protein solubility on the basis of solubility in aqueous solutions of salts and organic solvents. In S. Colowick & N. Kaplan (Eds.), Methods in enzymology (pp. 67–90). New York: Academic Press.

    Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  32. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  33. Paiva, P. M. G., & Coelho, L. C. B. B. (1992). Purification and partial characterization of two lectin isoforms from Cratylia mollis Mart. (camaratu bean). Applied Biochemistry and Biotechnology, 36, 113–118.

    Article  CAS  Google Scholar 

  34. Bing, D. H., Weyand, J. G., & Stavinsky, A. B. (1967). Hemagglutination with aldehyde-fixed erythrocytes for assay of antigens and antibodies. Proceedings of the Society for Experimental Biology and Medicine, 124, 1166–1170.

    Article  CAS  Google Scholar 

  35. Paiva, P. M. G., Santana, G. M. S., Souza, I. F. A. C., Albuquerque, L. P., Agra-Neto, A. C., Albuquerque, A. C., Luz, L. A., Napoleão, T. H., & Coelho, L. C. B. B. (2011). Effect of lectins from Opuntia ficus indica cladodes and Moringa oleifera seeds on survival of Nasutitermes corniger. International Biodeterioration & Biodegradation, 65, 982–989.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for research grants and fellowship (L.C.B.B. Coelho, M.D.L. Oliveira, and P.M.G. Paiva), to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and to the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) for research grants. K.S. Moura would like to thank CNPq for graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Maria Guedes Paiva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura, K.S., da Silva, H.R.C., Dornelles, L.P. et al. Coagulant Activity of Water-Soluble Moringa oleifera Lectin Is Linked to Lowering of Electrical Resistance and Inhibited by Monosaccharides and Magnesium Ions. Appl Biochem Biotechnol 180, 1361–1371 (2016). https://doi.org/10.1007/s12010-016-2172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2172-y

Keywords

Navigation