Skip to main content
Log in

Antibacterial and Hemolytic Activity of a new Lectin Purified from the Seeds of Sterculia Foetida L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to isolate, characterize, and verify possible antibacterial and hemolytic activity for a lectin found in the seeds of Sterculia foetida L. Purification of the lectin from S. foetida (SFL) was realized with ion exchange chromatography DEAE-Sephacel coupled to HPLC. The purity and the molecular weight was determined by SDS-PAGE. The isolated SFL was characterized as to its glycoprotein nature, and sugar specificity, as well as resistance to pH, temperature, denaturing agents, reduction, oxidation, and chelation. A microdilution method was used to determine antibacterial activity, and hemolytic activity was observed in human erythrocytes. The SFL has a molecular weight of 17 kDa, and a carbohydrate content of 53 μg/mL, specific for arabinose and xylose, and is resistant to treatment with urea, sensitive to treatment with sodium metaperiodate and β-mercaptoethanol, and in the presence of EDTA lost its hemagglutinating activity (HA). However, in the presence of divalent cations (Ca2 + and Mn2 +) the HA was increased. The SFL remained active even after incubation at 80 °C, and, within pH values of between 5 and 11. The SFL inhibited the bacterial growth of all the tested strains and caused little hemolysis in human erythrocytes when compared to the positive control Triton X-100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bao, X., Pollard, M., & Ohlrogge, J. (2002). PNAS, 99(10), 7172–7177.

    Article  CAS  Google Scholar 

  2. Kale, S. S., Karade, V., & Tharkur, H. A. (2011). IJPSR(International Journal of Pharma Sciences and Research), 2(11), 2908–2914.

    CAS  Google Scholar 

  3. Vipunngeun, N., & Palanuvej, C. (2009). Journal of Health Research, 23(3), p.157.

    Google Scholar 

  4. Peumans, W. J., & Van Damme, E. J. M. (1995). Plant Physiology, 109, 347–352.

    Article  CAS  Google Scholar 

  5. Nascimento, K. N., Cunha, A. I., Nascimento, K. S., Cavada, B. S., Azevedo, A. M., & Aires-Barros, M. R. (2012). Journal of Molecular Recognition, 25, 527–541.

    Article  CAS  Google Scholar 

  6. Maciel, M. I. S., CavalcantI, M. S. M., Napoleão, T. H. N., Paiva, P. M. G., Catanho, M. T. J. A., & Coelho, L. C. B. B. (2012). Applied Biochemistry and Biotechnology, 168, 580–591.

    Article  CAS  Google Scholar 

  7. Shing, R. S., Thakur, G., & Bhari, R. (2009). Indian Journal of Microbiology, 49, 219–222.

    Article  Google Scholar 

  8. Jimenez, P., Tejero, J., Cabrero, P., Cordoba-Diaz, D., & Girbes, T. (2013). Food Chemistry, 136, 794–802.

    Article  CAS  Google Scholar 

  9. Sureshkumar, T., & Priya, S. (2012). Applied Biochemistry and Biotechnology, 168, 2257.

    Article  CAS  Google Scholar 

  10. Soares, G. S. F., Assreuy, A. M. S., Gadelha, C. A. A., Gomes, V. M. G., Delatorre, P., Simões, R. C., Cavada, B. S., Leite, J. F., Nagano, C. S., Pinto, N. V., Pessoa, H. L. F., & Santi-Gadelha, T. (2012). Protein Journal, 31, 674–680.

    Article  CAS  Google Scholar 

  11. Li, T., Yin, X., Liu, D., Ma, X., Lv, H., & Sun, S. (2012). Acta Biochim Biophys, 44, 606–613.

    CAS  Google Scholar 

  12. Napoleão, T. H., Pontual, E. V., Albuquerque, T., Lima, N. D., Sá, R. A., Coelho, L. C., Navarro, D. M., & Paiva, P. M. (2012). Parasitology Research, 110, 609–616.

    Article  Google Scholar 

  13. Pinto, V. P. T., Debray, H., Dus, D., Teixeira, E. H., Oliveira, T. M., Carneiro, V. A., Alrieta, H., et al. (2009). Advances in Pharmacological Sciences, 2009, p. 1–6.

    Article  Google Scholar 

  14. Wong, R. W. K., Hagg, U., Samaranayake, L., Yuen, M. K. Z., Seneviratne, C. J., & Kao, R. (2010). International Journal Oral Maxillofacial Surgeons, 39, 599–605.

    Article  CAS  Google Scholar 

  15. Santi-Gadelha, T., et al. (2006). Biochemical and Biophysical Research Communications, 350(4), 1050–1055.

    Article  CAS  Google Scholar 

  16. Gaidamashvili, M., & Staden, J. V. (2002). Journal of Ethnopharmacology, 80, 131–135.

    Article  CAS  Google Scholar 

  17. Alencar, N. M. N., Cavalcante, C. F., Vasconcelos, M. P., Leite, K. B., Aragão, K. S., Assreuy, A. M. S., et al. (2005). Journal of Pharmacy and Pharmacology, 57, 919–922.

    Article  CAS  Google Scholar 

  18. Holanda, M. L., et al. (2005). Brazilian Journal of a Medical and Biological Research, 38, 1769–1773.

    CAS  Google Scholar 

  19. Cavalcanti, T. T. A., Rocha, B. A. M., Carneiro, V. A., Arruda, F. V. S., Nascimento, A. S. F., Sá, N. C., Nascimento, K. S., Cavada, B. S., & Teixeira, E. H. (2011). Molecules, 16(5), 3530–3543.

    Article  Google Scholar 

  20. Schiar, V. P. P., Santos, D. B., Ludtke, D. S., Vargas, F., Paixão, M. W., Nogueira, C. W., Zeni, G., & Rocha, B. T. (2007). Toxicology in Vitro, 21, 139–145.

    Article  CAS  Google Scholar 

  21. Bradford, M. A. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  23. Ganapati, G., Bhat-Kartika, N., Shetty-Nagaraja, N., Nagre-Vivek, V., Neekhra, S., Lingaraju-Ramesh, S., Bhat-Shashikala, R., Inamdar, K., & Suguna-Bale, M. (2010). Glycoconjugate Journal, 27, p.309–320.

    Article  Google Scholar 

  24. Nagano, C. S., Moreno, F. B. M. B., Bloch-Junior, C., Prates, M. V., Calvete, J. J., Salker-Sampaio, S., Farias, W. R. L., et al. (2002). Protein and Peptide Letters, 34, 159–165.

    Article  Google Scholar 

  25. Pinto, L. S., Nagano, C. S., Oliveira, T. M., Moura, T. R., Sampaio, A. H., Debray, H., Pinto, V. P., Dellagostin, O. A., & Cavada, B. S. (2008). Journal of Biosciences, 33, 355–366.

    Article  CAS  Google Scholar 

  26. Laija, S. N., Mahesh, S., Smitha, L. S., & Remani, P. (2010). Current. Research Journal of Biological Sciences, 2(4), 232–237.

    CAS  Google Scholar 

  27. Bhat, G. G., Shetty, K. N., Nagre, N. N., Neekhra, V. V., Lingaraju, S., Bhat, R. S., Inamdar, S. R., Suguna, K., & Swamy, B. M. (2010). Glycoconj Journal, 27, 309–320.

    Article  CAS  Google Scholar 

  28. Nair, D. N., Singh, V., Yamaguchi, Y., & Singh, D. D. (2012). Planta. doi:10.1007/s00425-012-1702-2.

    Google Scholar 

  29. Leite, J. F. M., Assreuy, A. M. S., Mota, M. R. L., Bringel, P. H. S. F., Lacerda, R. R., Gomes, V. M., et al. (2012). Molecules, 17, 3277–3290.

    Article  CAS  Google Scholar 

  30. Banerjee, S., Chaki, S., Bhowal, J., & Chatterjee, B. P. (2004). Archives of Biochemistry and Biophysics, 421(1), 125–134.

    Article  CAS  Google Scholar 

  31. Bhowal, J., Guha, A. K., & Chatterjee, B. P. (2005). Carbohydrate Research, 340, 1973–1982.

    Article  CAS  Google Scholar 

  32. Katre, U. V., Suresh, C. G., Khan, M. I., & Gaikwad, S. M. (2008). International Journal of Biological Macromolecules, 42, p.203–207.

    Article  Google Scholar 

  33. Gomes, F. S., Procopio, T. F., Napoleao, T. H., COELHO, L. C. B. B., & PAIVA, P. M. G. (2012). Journal of Applied Microbiology, 114, 672–679.

    Article  Google Scholar 

  34. He, X., Ji, N., Xiang, X., Luo, P., & Bao, J. (2012). Applied Biochemistry Biotechnology, 165, 1458–1472.

    Article  Google Scholar 

  35. Benevides, R.G. (2008) Phd Thesis, Universidade Federal do Ceará, Fortaleza, Brazil.

  36. Pereira-Junior, F. N., Silva, H. C., Freitas, B. T., Rocha, B. A. M., Nascimento, K. S., Nagano, C. S., Leal, R. B., Sampaio, A. H., & Cavada, B. S. (2012). Journal Molecular Recognition, 25, 443–449.

    Article  CAS  Google Scholar 

  37. Silva, M. C., Corrêa, A. D., Santos, C. D., Marcos, F. C. A., & Abreu, C. M. P. (2010). Ciênce Tecnology Aliment, 30, 103–107.

    Article  Google Scholar 

  38. Oliveira, M. D. L., Andrade, C. A. S., Magalhães, N. S., Coelho, L. C. B. B., Teixeira, J. A., Carneiro-da-Cunha, M. G., & Correia, M. T. S. (2008). Letters Applied Microbiology, 46, 371–376.

    Article  CAS  Google Scholar 

  39. Charungchitrak, S., Petsom, A., Sangvanich, P., & Aphichart, K. (2011). FoodChemistry, 126, 1025–1032.

    CAS  Google Scholar 

  40. Rangel, M., Malpezzi, E. L. A., Susini, S. M. M., & Freitas, J. C. (1997). Hemolytic activity in extracts of the diatom Nitzsnhia. Toxicon, 35, 305–309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiane Santi-Gadelha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, A.A., e Lacerda, R.R., de Vasconcelos Medeiros, G.K.V. et al. Antibacterial and Hemolytic Activity of a new Lectin Purified from the Seeds of Sterculia Foetida L.. Appl Biochem Biotechnol 175, 1689–1699 (2015). https://doi.org/10.1007/s12010-014-1390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1390-4

Keywords

Navigation