Skip to main content
Log in

An Acid-Adapted Endo-α-1,5-l-arabinanase for Pectin Releasing

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An arabinanase gene was cloned by overlap-PCR from Penicillium sp. Y702 and expressed in Pichia pastoris. The recombinant enzyme was named AbnC702 with 20 U/mg of endo-arabinanase activity toward linear α-1,5-l-arabinan. The optimal pH and temperature of AbnC702 were 5.0 and 50 °C, respectively. The recombinant AbnC702 was highly stable at pH 5.0–7.0 and 50 °C. It could retain about 72.3 % of maximum specific activity at pH 5.0 after incubation for 2.5 h, which indicated AbnC702 was an acid-adapted enzyme. The K m and V max values were 24.8 ± 4.7 mg/ml and 88.5 ± 5.6 U/mg, respectively. A three-dimensional structure of AbnC702 was made by homology modeling, and the counting of acidic/basic amino residues within the region of 10 Å around the active site, as well the hydrogen bonds within the area of 5 Å around the active site, might theoretically interpret the acid adaptability of AbnC702. Analysis of hydrolysis products by thin layer chromatography (TLC) combined with high-performance liquid chromatography (HPLC) verified that the recombinant AbnC702 was an endo-1,5-α-l-arabinanase, which yielded arabinobiose and arabinotriose as major products. AbnC702 was applied in pectin extraction from apple pomace with synergistic action of α-L-arabinofuranosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Janaswamy, S., & Chandrasekaran, R. (2005). Polysaccharide structures from powder diffraction data: molecular models of arabinan. Carbohydrate Research, 340, 835–839.

    Article  CAS  Google Scholar 

  2. Shulami, S., Raz-Pasteur, A., Tabachnikov, O., Gilead-Gropper, S., Shner, I., & Shoham, Y. (2011). The L-arabinan utilization system of Geobacillus stearothermophilus. Journal of Bacteriology, 193, 2838–2850.

    Article  CAS  Google Scholar 

  3. Lim, Y. R., Yoon, R. Y., Seo, E. S., Kim, Y. S., Park, C. S., & Oh, D. K. (2010). Hydrolytic properties of a thermostable α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. Journal of Applied Microbiology, 109, 1188–1197.

    Article  CAS  Google Scholar 

  4. Numan, M. T., & Bhosle, N. B. (2006). Alpha-L-arabinofuranosidases: the potential applications in biotechnology. Journal of Industrial Microbiology & Biotechnology, 332, 247–260.

    Article  Google Scholar 

  5. Hong, Y., Hitomi, I., Mitsutoshi, N., Hideyuki, K., & Satoshi, K. (2006). Synergy between an α-L-arabinofuranosidase from Aspergillus oryzae and an endo-arabinanase from Streptomyces coelicolor for degradation of arabinan. Food Science and Technology Research, 12, 43–49.

    Article  Google Scholar 

  6. Damasio, A. R. D., Pessela, B. C., Segato, F., Prade, R. A., Guisan, J. M., & Polizeli, M. D. T. M. (2012). Improvement of fungal arabinofuranosidase thermal stability by reversible immobilization. Process Biochemistry, 47, 2411–2417.

    Article  CAS  Google Scholar 

  7. Yang, X. Z., Shi, P. J., Ma, R., Luo, H. Y., Huang, H. Q., Yang, P. L., & Yao, B. (2015). A new GH43 α-arabinofuranosidase from Humicola insolens Y1: biochemical characterization and synergistic action with a xylanase on xylan degradation. Applied Biochemistry and Biotechnology, 175, 1960–1970.

    Article  CAS  Google Scholar 

  8. Seiboth, B., & Metz, B. (2011). Fungal arabinan and L-arabinose metabolism. Applied Microbiology and Biotechnology, 89, 1665–1673.

    Article  CAS  Google Scholar 

  9. Grootaert, C., Delcour, J. A., Courtin, C. M., Broekaert, W. F., Verstraete, W., & Van de Wiele, T. (2007). Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends in Food Science & Technology, 18, 64–71.

    Article  CAS  Google Scholar 

  10. Li, J. Z., Ren, N. Q., Li, B. K., Qin, Z., & He, J. G. (2008). Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresource Technology, 99, 6528–6537.

    Article  CAS  Google Scholar 

  11. Becker, J., & Boles, E. (2003). A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Applied and Environmental Microbiology, 69, 4144–4150.

    Article  CAS  Google Scholar 

  12. Bettiga, M., Bengtsson, O., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. (2009). Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microbial Cell Factories, 8, 40–52.

    Article  Google Scholar 

  13. Sakamoto, T., Yoshinaga, J., Shogaki, T., & Sakai, T. (1993). Studies on protopectinase-C mode of action: analysis of the chemical structure of the specific substrate in sugar beet protopectin and characterization of the enzyme activity. Bioscience Biotechnology and Biochemistry, 57, 1832–1837.

    Article  CAS  Google Scholar 

  14. Takao, M., Yamaguchi, A., Yoshikawa, K., Terashita, T., & Sakai, T. (2002). Molecular cloning of the gene encoding thermostable endo-1,5-α-L-arabinase of Bacillus thermodenitrificans TS-3 and its expression in Bacillus subtilis. Bioscience Biotechnology and Biochemistry, 66, 430–433.

    Article  CAS  Google Scholar 

  15. Ptichkina, N. M., Markina, O. A., & Runlyantseva, G. N. (2008). Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocolloids, 22, 192–195.

    Article  CAS  Google Scholar 

  16. Panouille, M., Thibault, J. F., & Bonnin, E. (2006). Cellulase and protease preparations can extract pectins from various plant byproducts. Journal of Agricultural and Food Chemistry, 54, 8926–8935.

    Article  CAS  Google Scholar 

  17. Li, X. L., He, X. L., Lv, Y. P., & He, Q. (2014). Extraction and functional properties of water-soluble dietary fiber from apple pomace. Journal of Food Process Engineering, 37, 293–298.

    Article  CAS  Google Scholar 

  18. Cheng, L., Sun, Z. T., Du, J. H., & Jian, W. (2008). Response surface optimization of fermentation conditions for producing xylanase by Aspergillus niger SL-05. Journal of Industrial Microbiology and Biotechnology, 35, 703–711.

    Article  Google Scholar 

  19. Park, J. M., Jang, M. U., Kang, J. H., Kim, M. J., Lee, S. W., Song, Y. B., Shin, C. S., Han, N. S., & Kim, T. J. (2012). Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. Journal of Microbiology, 50, 1041–1046.

    Article  CAS  Google Scholar 

  20. Seo, E. S., Lim, Y. R., Kim, Y. S., Park, C. S., & Oh, D. K. (2010). Characterization of a recombinant endo-1,5-alpha-L-arabinanase from the isolated Bacterium Bacillus. Biotechnology and Bioprocess Engineering, 15, 590–594.

    Article  CAS  Google Scholar 

  21. Leal, T. F., & de Sa-Nogueira, I. (2004). Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiology Letters, 241, 41–48.

    Article  CAS  Google Scholar 

  22. Inácio, J. M., & de Sá-Nogueira, I. (2008). Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. Journal of Bacteriology, 190, 4272–4280.

    Article  Google Scholar 

  23. Shi, H., Ding, H. H., Huang, Y. J., Wang, L. L., Zhang, Y., Li, X., & Wang, F. (2014). Expression and characterization of a GH43 endo-arabinanase from Thermotoga thermarum. BMC Biotechnology, 14, 1–9.

    Article  CAS  Google Scholar 

  24. Squina, F. M., Santos, C. R., Ribeiro, D. A., Cota, J., de Oliveira, R. R., Ruller, R., Mort, A., Murakami, M. T., & Prade, R. A. (2010). Substrate cleavage pattern, biophysical characterization and low-resolution structure of a novel hyperthermostable arabinanase from Thermotoga petrophila. Biochemical and Biophysical Research Communications, 399, 505–511.

    Article  CAS  Google Scholar 

  25. Sakamoto, T., Ihara, H., Kozaki, S., & Kawasaki, H. (2003). A cold-adapted endo-arabinanase from Penicillium chrysogenum. Biochimica et Biophysica Acta-General Subjects, 1624, 70–75.

    Article  CAS  Google Scholar 

  26. Chen, Z., Liu, Y., Yan, Q. J., Yang, S. Q., & Jiang, Z. Q. (2015). Biochemical characterization of a novel endo-1,5-alpha-L-arabinanase from Rhizomucor miehei. Journal of Agricultural and Food Chemistry, 63, 1226–1233.

    Article  CAS  Google Scholar 

  27. Sakamoto, T., & Thibault, J. F. (2001). Exo-arabinanase of Penicillium chrysogenum able to release arabinobiose from alpha-1,5-L-arabinan. Applied and Environmental Microbiology, 67, 3319–3321.

    Article  CAS  Google Scholar 

  28. Sakamoto, T., & Kawasaki, H. (2003). Purification and properties of two type-B α-L-arabinofuranosidases produced by Penicillium chrysogenum. Biochimica Et Biophysica Acta, 1621, 204–210.

    Article  CAS  Google Scholar 

  29. Sakamoto, T., Ogura, A., Inui, M., Tokuda, S., Hosokawa, S., Ihara, H., & Kasai, N. (2011). Identification of a GH62 α-L-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Applied Microbiology and Biotechnology, 90, 137–146.

    Article  CAS  Google Scholar 

  30. Sakamoto, T., Inui, M., Yasui, K., Tokuda, S., Akiyoshi, M., Kobori, Y., Nakaniwa, T., & Tada, T. (2012). Biochemical characterization and gene expression of two endo-arabinanases from Penicillium chrysogenum 31B. Applied Microbiology and Biotechnology, 93, 1087–1096.

    Article  CAS  Google Scholar 

  31. Wang, S. H., Yang, Y., Yang, R. J., Zhang, J., Chen, M., Matsukawa, S., Xie, J. L., & Wei, D. Z. (2014). Cloning and characterization of a cold-adapted endo-1,5-alpha-L-arabinanase from Paenibacillus polymyxa and rational design for acidic applicability. Journal of Agricultural and Food Chemistry, 62, 8460–8469.

    Article  CAS  Google Scholar 

  32. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

    Article  CAS  Google Scholar 

  33. Wu, S. X., & Letchworth, G. J. (2004). High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques, 36, 152–154.

    CAS  Google Scholar 

  34. Sogabe, Y., Kitatani, T., Yamaguchi, A., Kinoshita, T., Adachi, H., Takano, K., Inoue, T., Mori, Y., Matsumura, H., & Sakamoto, T. (2011). High-resolution structure of exo-arabinanase from Penicillium chrysogenum. Acta Crystallographica, Section D: Biological Crystallography, 67, 415–422.

    Article  CAS  Google Scholar 

  35. Takao, M., Akiyama, K., & Sakai, T. (2002). Purification and characterization of thermostable endo-1,5-α-L-arabinase from a strain of Bacillus thermodenitrificans. Applied and Environmental Microbiology, 68, 1639–1646.

    Article  CAS  Google Scholar 

  36. Kazenwadel, C., Klebensberger, J., Richter, S., Pfannstiel, J., Gerken, U., Pickel, B., Schaller, A., & Hauer, B. (2012). Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function. Applied Microbiology and Biotechnology, 97, 7215–7227.

    Article  Google Scholar 

  37. de Sanctis, D., Inacio, J. M., Lindley, P. F., de Sa-Nogueira, I., & Bento, I. (2010). New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases. The FEBS Journal, 277, 4562–4574.

    Article  Google Scholar 

  38. Pons, T., Naumoff, D. G., Martínez-Fleites, C., & Hernández, L. (2004). Three acidic residues are at the active site of a β-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Proteins, 54, 424–432.

    Article  CAS  Google Scholar 

  39. Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3, 853–859.

    Article  CAS  Google Scholar 

  40. Yang, H. Q., Liu, L., Shin, H. D., Chen, R. R., Li, J. H., Du, G. C., & Chen, J. (2013). Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. Journal of Biotechnology, 164, 59–66.

    Article  CAS  Google Scholar 

  41. Sakamoto, T., Ihara, H., Kozaki, S., & Kawasaki, H. (2003). A cold-adapted endo-arabinanase from Penicillium chrysogenum. Biochimica et Biophysica Acta, 1624, 70–75.

    Article  CAS  Google Scholar 

  42. Wong, D. W., Chan, V. J., & McCormack, A. A. (2009). Functional cloning and expression of a novel endo-α-1,5-L-arabinanase from a metagenomic library. Protein and Peptide Letters, 16, 1435–1441.

    Article  CAS  Google Scholar 

  43. Ridley, B. L., O’Neill, M. A., & Mohnen, D. A. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57, 929–967.

    Article  CAS  Google Scholar 

  44. Schols, H. A., Mutter, M., Voragen, A. G., Niessen, W. M., van der Hoeven, R. A., van der Greef, J., & Bruggink, C. (1994). The use of combined high-performance anion-exchange chromatography-thermospray mass spectrometry in the structural analysis of pectic oligosaccharides. Carbohydrate Research, 261, 335–342.

    Article  CAS  Google Scholar 

  45. Glushka, J. N., Terrell, M., York, W. S., O’Neill, M. A., Gucwa, A., Darvill, A. G., Albersheim, P., & Prestegard, J. H. (2003). Primary structure of the 2-O-methyl-alpha-L-fucose-containing side chain of the pectic polysaccharide, rhamnogalacturonan II. Carbohydrate Research, 338, 341–352.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Special Fund for State Key Laboratory of Bioreactor Engineering (2060204) and partially supported by the National Natural Science Foundation of China (Nos. 21506057 and 21506057), the National High Technology Research and Development Program of China (No. 2013AA102109), and the Natural Science Foundation of Shanghai (No. 2013ZR1412100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingli Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, C., Yang, R., Yang, Y. et al. An Acid-Adapted Endo-α-1,5-l-arabinanase for Pectin Releasing. Appl Biochem Biotechnol 180, 900–916 (2016). https://doi.org/10.1007/s12010-016-2141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2141-5

Keywords

Navigation